People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Backofen, Rainer
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022Controlling magnetic anisotropy in amplitude expansion of phase field crystal model
- 2019CONVEXITY SPLITTING IN A PHASE FIELD MODEL FOR SURFACE DIFFUSION
- 2017Controlling the energy of defects and interfaces in the amplitude expansion of the phase-field crystal modelcitations
- 2017Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitecturescitations
- 2017Phase-field simulations of faceted Ge/Si-crystal arrays, merging into a suspended filmcitations
- 2016Thin-film growth dynamics with shadowing effects by a phase-field approachcitations
- 2015Engineered coalescence by annealing 3D Ge microstructures into high-quality suspended layers on Sicitations
- 2015Faceting of equilibrium and metastable nanostructures: a Phase-Field model of surface diffusion tackling realistic shapescitations
Places of action
Organizations | Location | People |
---|
article
Phase-field simulations of faceted Ge/Si-crystal arrays, merging into a suspended film
Abstract
We simulate the morphological evolution of Ge microcrystals, grown out-of-equilibrium on deeply patterned Si substrates, as resulting from surface diffusion driven by the tendency toward the minimization of the surface energy. In particular, we report three-dimensional phase-field simulations accounting for the realistic surface energy anisotropy of Ge/Si crystals. In Salvalaglio et al. (2015) [10] it has been shown both by experiments and simulations that annealing of closely spaced crystals leads to a coalescence process with the formation of a suspended film. However, this was explained only by considering an isotropic surface energy. Here, we extend such a study by showing first the morphological changes of faceted isolated crystals. Then, the evolution of dense arrays is considered, describing their coalescence along with the evolution of facets. Combined with the previous results without anisotropy in the surface energy, this work allows us to confirm and assess the key features of the coalescence process. (C) 2016 Elsevier B.V. All rights reserved.