People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cao, Zhi
Athlone Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Compatibility Study Between Fenbendazole and Poly(Ethylene Oxide) with Application in Solid Dispersion Formulations Using Hot-Melt Extrusioncitations
- 2021Influence of extrusion screw speed on the properties of halloysite nanotube impregnated polylactic acid nanocompositescitations
- 2021Development, characterization and cell viability inhibition of pva spheres loaded with doxorubicin and 4′-amino-1-naphthyl-chalcone (D14) for osteosarcomacitations
- 2021Physical properties of shellac material used for hot melt extrusion with potential application in the pharmaceutical industrycitations
- 2021Physical properties of shellac material used for hot melt extrusion with potential application in the pharmaceutical industry
- 2019Titanium-niobium alloys covered by electrospinning technique to applications in bone implants
- 2016Synthesis and characterization of high density polyethylene/peat ash compositescitations
- 2016Chemical surface modification of calcium carbonate particles with stearic acid using different treating methodscitations
- 2016Characteristics of the treated calcium carbonate particles with stearic acid using different treating methods. ; Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods
Places of action
Organizations | Location | People |
---|
article
Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods
Abstract
<p>Calcium carbonate (CaCO<sub>3</sub>) is often treated with stearic acid (SA) to decrease its polarity. However, the method of application of the SA treatments has a strong influence on CaCO<sub>3</sub>thermoplastic composite's interfacial structure and distribution. Several of papers describe the promising effects of SA surface treatment, but few compare the treatment process and its effect on the properties of the final thermoplastic composite. In the current study, we assessed a new SA treatment method, namely, complex treatment for polymer composite fabrication with HDPE. Subsequently, a comparative study was performed between the “complex” process and the other existing methods. The composites were assessed using different experiments included scanning electron microscopy (SEM), void content, density, wettability, differential scanning calorimetry (DSC), and tensile tests. It was observed that the “complex” surface treatment yielded composites with a significantly lower voids content and higher density compared to other surface treatments. This indicates that after the “complex” treatment process, the CaCO<sub>3</sub>particles and HDPE matrix are more tightly packed than other methods. DSC and wettability results suggest that the “wet” and “complex” treated CaCO<sub>3</sub>composites had a significantly higher heat of fusion and moisture resistance compared to the “dry” treated CaCO<sub>3</sub>composites. Furthermore, “wet” and “complex” treated CaCO<sub>3</sub>composites have a significantly higher tensile strength than the composites containing untreated and “dry” treated CaCO<sub>3</sub>. This is mainly because the “wet” and “complex” treatment processes have increased adsorption density of stearate, which enhances the interfacial interaction between matrix and filler. These results confirm that the chemical adsorption of the surfactant ions at the solid-liquid interface is higher than at other interface. From this study, it was concluded that the utilization of the “complex” method minimised the negative effects of void coalescence provides key information for the improvement of existing processes.</p>