People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tougaard, Sven Mosbæk
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2022QUEELScitations
- 2020Optical properties of molybdenum in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopycitations
- 2020Universal inelastic electron scattering cross-section including extrinsic and intrinsic excitations in XPScitations
- 2017Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultravioletcitations
- 2016Determination of electronic properties of nanostructures using reflection electron energy loss spectroscopycitations
- 2016Quantitative spectromicroscopy from inelastically scattered photoelectrons in the hard X-ray rangecitations
- 2016Composition dependence of dielectric and optical properties of Hf-Zr-silicate thin films grown on Si(100) by atomic layer depositioncitations
- 2016Band-Gap Widening at the Cu(In,Ga)(S,Se)2 Surface:A Novel Determination Approach Using Reflection Electron Energy Loss Spectroscopycitations
- 2016Band-Gap Widening at the Cu(In,Ga)(S,Se)2 Surfacecitations
- 2016Quantitative analysis of reflection electron energy loss spectra to determine electronic and optical properties of Fe–Ni alloy thin filmscitations
- 2015Effects of cation compositions on the electronic properties and optical dispersion of indium zinc tin oxide thin films by electron spectroscopycitations
- 2014Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopycitations
- 2013Factor analysis and advanced inelastic background analysis in XPScitations
- 2013Surface excitation parameter for allotropic forms of carboncitations
- 2013Effects of gas environment on electronic and optical properties of amorphous indium zinc tin oxide thin filmscitations
- 2011Dielectric response functions of the (0001̄), (101̄3) GaN single crystalline and disordered surfaces studied by reflection electron energy loss spectroscopycitations
- 2009Dielectric and optical properties of Zr silicate thin films grown on Si(100) by atomic layer depositioncitations
- 2008Test of validity of the V-type approach for electron trajectories in reflection electron energy loss spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Determination of electronic properties of nanostructures using reflection electron energy loss spectroscopy
Abstract
<p>In this work, Au was deposited with nominal effective thickness of 0.8 nm on polystyrene (PS) at room temperature. According to previous study, using XPS peak shape analysis [S. Hajati, V. Zaporojtchenko, F. Faupel, S. Tougaard, Surf. Sci. 601 (2007) 3261-3267], Au nanoparticles (Au-NPs) of sizes 5.5 nm were formed corresponding to such effective thickness (0.8 nm). Then the sample was annealed to 200 °C, which is far above the glass transition of PS. At this temperature, the Au-NPs were diffused within the depth 0.5 nm-6.5 nm as found using nondestructive XPS peak shape analysis. Electrons with primary energy 500 eV were used because the electronic properties will then be probed in utmost surface (∼1 IMFP range of depths that is 1.8 nm for PS). By using QUEELS software, theoretical and experimental electron inelastic cross section, energy loss function, electron inelastic mean free path and surface excitation parameters were obtained for the sample. The information obtained here, does not rely on any previously known information on the sample. This means that the method, applied here, is suitable for the determination of the electronic properties of new and unknown composite nanostructures.</p>