People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Céspedes, Francisco
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2016Characterization protocol to improve the electroanalytical response of graphene-polymer nanocomposite sensorscitations
- 2016Highly sensitive electrochemical immunosensor for IgG detection based on optimized rigid biocompositescitations
- 2016Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated β-cyclodextrincitations
- 2016Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dotscitations
- 2016CdS quantum dots as a scattering nanomaterial of carbon nanotubes in polymeric nanocomposite sensors for microelectrode array behaviorcitations
- 2016Intermatrix synthesis of Ag, AgAu and Au nanoparticles by the galvanic replacement strategy for bactericidal and electrocatalytically active nanocompositescitations
- 2015Modified multiwalled carbon nanotube/epoxy amperometric nanocomposite sensors with CuO nanoparticles for electrocatalytic detection of free chlorinecitations
- 2015Improvement of the detection limit for biosensors: Advances on the optimization of biocomposite compositioncitations
- 2015Effect of carbon nanotubes purification on electroanalytical response of near-percolation amperometric nanocomposite sensorscitations
- 2014Towards to the improvement of the analytical response in voltammetric sensors based on rigid compositescitations
- 2014Simple green routes for the customized preparation of sensitive carbon nanotubes/epoxy nanocomposite electrodes with functional metal nanoparticlescitations
- 2012Determination of total polyphenol index in wines employing a voltammetric electronic tonguecitations
- 2011A new amperometric bienzymatic biosensor based on biocomposites for the determination of gluconic acid in winescitations
- 2009Novel amperometric sensor based on rigid near-percolation compositecitations
- 2009Resolution of heavy metal mixtures from highly overlapped ASV voltammograms employing a wavelet neural networkcitations
Places of action
Organizations | Location | People |
---|
article
Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dots
Abstract
© 2016 Elsevier B.V. All rights reserved. Intermatrix Synthesis (IMS) technique has proven to be a valid methodology for the in situ incorporation of quantum dots (QDs) in a wide range of nanostructured surfaces for the preparation of advanced hybrid-nanomaterials. In this sense, this communication reports the recent advances in the application of IMS for the synthesis of CdS-QDs with favourable distribution on sulfonated polyetherether ketone (SPEEK) membrane thin films (TFs), multiwall carbon nanotubes (MWCNTs) and nanodiamonds (NDs). The synthetic route takes advantage of the ion exchange functionality of the reactive surfaces for the loading of the QDs precursor and consequent QDs appearance by precipitation. The benefits of such modified nanomaterials were studied using CdS-QDs@MWCNTs hybrid-nanomaterials. CdS-QDs@MWCNTs has been used as conducting filler for the preparation of electrochemical nanocomposite sensors, which present electrocatalytic properties. Finally, the optical properties of the QDs contained on MWCNTs could allow a new procedure for the analytical detection of nanostructured carbon allotropes in water.