People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Potter, Richard
University of Liverpool
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2021Demonstration of a Fast, Low-Voltage, III-V Semiconductor, Non-Volatile Memorycitations
- 2020Band line-up investigation of atomic layer deposited TiAlO and GaAlO on GaNcitations
- 2017Atomic Layer Deposition of a Silver Nanolayer on Advanced Titanium Orthopedic Implants Inhibits Bacterial Colonization and Supports Vascularized de Novo Bone Ingrowthcitations
- 2016Comparative analysis of the effects of tantalum doping and annealing on atomic layer deposited (Ta2O5)<i>x</i>(Al2O3)1−<i>x</i> as potential gate dielectrics for GaN/AlxGa1−xN/GaN high electron mobility transistorscitations
- 2016Self-limiting atomic layer deposition of conformal nanostructured silver filmscitations
Places of action
Organizations | Location | People |
---|
article
Self-limiting atomic layer deposition of conformal nanostructured silver films
Abstract
The controlled deposition of ultra-thin conformal silver nanoparticle films is of interest for applications including anti-microbial surfaces, plasmonics, catalysts and sensors. While numerous techniques can produce silver nanoparticles, few are able to produce highly conformal coatings on high aspect ratio surfaces, together with sub-nanometre control and scalability. Here we develop a self-limiting atomic layer deposition (ALD) process for the deposition of conformal metallic silver nanoparticle films. The films have been deposited using direct liquid injection ALD with ((hexafluoroacetylacetonato)silver(I)(1,5- cyclooctadiene)) and propan-1-ol. An ALD temperature window between 123 and 128 ◦ C is identified and within this range self-limiting growth is confirmed with a mass deposition rate of ∼17.5 ng/cm2 /cycle. The effects of temperature, precursor dose, co-reactant dose and cycle number on the deposition rate and on the properties of the films have been systematically investigated. Under self-limiting conditions, films are metallic silver with a nano-textured surface topography and nanoparticle size is dependent on the number of ALD cycles. The ALD reaction mechanisms have been elucidated using in-situ quartz crystal microbalance (QCM) measurements, showing chemisorption of the silver precursor, followed by heterogeneous catalytic dehydrogenation of the alcohol to form metallic silver and an aldehyde.