People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Haapanen, Janne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2020Protective stainless steel micropillars for enhanced photocatalytic activity of TiO2 nanoparticles during wearcitations
- 2019Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanizationcitations
- 2019Characterization of flame coated nanoparticle surfaces with antibacterial properties and the heat-induced embedding in thermoplastic-coated papercitations
- 2018Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanizationcitations
- 2018Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanizationcitations
- 2016Wetting hysteresis induced by temperature changescitations
- 2016TiO2 nanostructures for dye-sensitized solar cells (DSSCs) on a glass substrate
- 2015Long-term corrosion protection by a thin nano-composite coatingcitations
- 2015Coating of Silica and Titania Aerosol Nanoparticles by Silver Vapor Condensationcitations
- 2015Roll-to-roll coating by liquid flame spray nanoparticle depositioncitations
- 2014Abrasion and Compression Resistance of Liquid-Flame-Spray-Deposited Functional Nanoparticle Coatings on Paper
- 2013Compressibility of porous TiO₂ nanoparticle coating on paperboardcitations
- 2013ToF-SIMS analysis of UV-switchable TiO₂-nanoparticle-coated paper surfacecitations
Places of action
Organizations | Location | People |
---|
article
Long-term corrosion protection by a thin nano-composite coating
Abstract
e report and discuss the corrosion protective properties of a thin nano-composite coating system consisting of an 11 µm thick polyester acrylate (PEA) basecoat, covered by an approximately 1–2 µm thick layer of TiO2 nanoparticles carrying a 0.05 µm thick hexamethyl disiloxane (HMDSO) top coat. The corrosion protective properties were evaluated on carbon steel substrates immersed in 3 wt% NaCl solution by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) measurements. The protective properties of each layer, and of each pair of layers, were also evaluated to gain further understanding of the long-term protective properties offered by the nano-composite coating. The full coating system showed excellent corrosion protective properties in the corrosive environment of 3 wt% NaCl-solution for an extended period of 100 days, during which the coating impedance, at the lower frequency limit (0.01 Hz), remained above 108 O cm2. We suggest that the excellent corrosion protective properties of the complete coating system is due to a combination of (i) good adhesion and stability of the PEA basecoat, (ii) the surface roughness and the elongated diffusion path provided by the addition of TiO2 nanoparticles, and (iii) the low surface energy provided by the HMDSO top coat.