People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vázquez, Mercedes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021Review of materials and fabrication methods for flexible nano and micro-scale physical and chemical property sensorscitations
- 2018Taguchi method modelling of Nd:YAG laser ablation of microchannels on cyclic olefin polymer filmcitations
- 2016Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablationcitations
- 2014Liquid phase pulsed laser ablation: a route to fabricate different carbon nanostructurescitations
- 2014Focussed ion beam serial sectioning and imaging of monolithic materials for 3D reconstruction and morphological parameter evaluationcitations
- 2012Laser processing of quartz for microfluidic device fabricationcitations
Places of action
Organizations | Location | People |
---|
article
Liquid phase pulsed laser ablation: a route to fabricate different carbon nanostructures
Abstract
Carbon nanostructures in various forms and sizes, and with different speciation properties have been prepared from graphite by Liquid Phase - Pulsed Laser Ablation (LP-PLA) using a high frequency Nd:YAG laser. High energy densities and pulse repetition frequencies of up to 10 kHz were used in this ablation process to produce carbon nanomaterials with unique chemical structures. Dynamic Light Scattering (DLS), micro-Raman and High-Resolution Transmission Electron Microscopy (HRTEM) were used to confirm the size distribution, morphology, chemical bonding, and crystallinity of these nanostructures. This article demonstrates how the fabrication process affects measured characteristics of the produced carbon nanomaterials. The obtained particle properties have potential use for various applications including biochemical speciation applications.