Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Farahani, Taghi Shahrabi

  • Google
  • 1
  • 3
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Effects of duty cycle on microstructure and corrosion behavior of TiC coatings prepared by DC pulsed plasma CVD39citations

Places of action

Chart of shared publication
Shanaghi, Ali
1 / 17 shared
Rouhaghdam, Ali Reza Sabour
1 / 3 shared
Ahangarani, Shahrokh
1 / 4 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Shanaghi, Ali
  • Rouhaghdam, Ali Reza Sabour
  • Ahangarani, Shahrokh
OrganizationsLocationPeople

article

Effects of duty cycle on microstructure and corrosion behavior of TiC coatings prepared by DC pulsed plasma CVD

  • Farahani, Taghi Shahrabi
  • Shanaghi, Ali
  • Rouhaghdam, Ali Reza Sabour
  • Ahangarani, Shahrokh
Abstract

Titanium carbide coatings are deposited on hot-work steel (H <sub>11</sub>) by plasma-assisted chemical vapor deposition (PACVD) and the dependence of the corrosion behavior on fabrication parameters is investigated. Grazing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FESEM), Raman and electrochemical tests are used to study the structure as well as corrosion behaviors. Grazing incidence X-ray diffraction reveals the (2 0 0) plane implying that the TiC coatings are deposited via the kinetics-limited crystal growth mechanism and under thermodynamically stable conditions. The SEM results indicate that the formation of a homogeneous and uniform titanium carbide nanostructure coatings. Potentiodynamic and electrochemical impedance tests performed in 0.5 M H <sub>2</sub>SO <sub>4</sub> and 0.05 M NaCl show that the TiC coating produced using a 40% duty cycle possesses high corrosion resistance in both media. The R <sub>p</sub> values of the TiC coating (50% duty cycle) in 0.05 M NaCl and the other TiC coating (40% duty cycle) in 0.5 M H <sub>2</sub>SO <sub>4</sub> are approximately four and sixteen orders of magnitude higher than that of the bare steel, respectively. Our results reveal that the duty cycles not only affect the structure and morphology of the coatings but also influence the electrochemical properties. © 2011 Elsevier B.V. All rights reserved.

Topics
  • impedance spectroscopy
  • microstructure
  • morphology
  • corrosion
  • scanning electron microscopy
  • x-ray diffraction
  • carbide
  • titanium
  • chemical vapor deposition
  • hot-work steel