Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dobrev, T.

  • Google
  • 1
  • 4
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009Investigation of amorphous and crystalline Ni alloys response to machining with micro-second and pico-second lasers27citations

Places of action

Chart of shared publication
Dimov, Stefan
1 / 31 shared
Quintana, I.
1 / 2 shared
Lalev, G.
1 / 5 shared
Aranzabe, A.
1 / 1 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Dimov, Stefan
  • Quintana, I.
  • Lalev, G.
  • Aranzabe, A.
OrganizationsLocationPeople

article

Investigation of amorphous and crystalline Ni alloys response to machining with micro-second and pico-second lasers

  • Dimov, Stefan
  • Quintana, I.
  • Lalev, G.
  • Aranzabe, A.
  • Dobrev, T.
Abstract

The machining response of amorphous and polycrystalline Ni-based alloys (Ni78B14Si8) when subjected to micro-second and pico-second laser processing is investigated in this research. The shape and topography of craters created with single pulses as a function of laser energy together with holes drilled in both materials were studied. Focused ion beam (FIB) imaging was used to analyse the single craters and the through holes in the amorphous and polycrystalline samples. The material microstructure analysis revealed that processing both materials with micro-second and pico-second lasers does not lead to crystallisation and the short-range atomic ordering of metallic glasses can be retained. When processing the amorphous sample the material laser interactions resulted in a significant ejection of molten material from the bulk that was then followed by its partial re-deposition around the craters. Additionally, there were no signs of crack formation that indicate a higher surface integrity after laser machining. A conclusion is made that laser processing both with short- and long-pulses is a promising technique for micromachining metallic glasses because it does not lead to material crystallisation.

Topics
  • Deposition
  • impedance spectroscopy
  • microstructure
  • surface
  • amorphous
  • glass
  • glass
  • crack
  • focused ion beam