People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Figueiredo, Vitor
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2013Current transport mechanism at metal-semiconductor nanoscale interfaces based on ultrahigh density arrays of p-type NiO nano-pillarscitations
- 2012p-Type CuxO Films Deposited at Room Temperature for Thin-Film Transistorscitations
- 2008Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic coppercitations
Places of action
Organizations | Location | People |
---|
article
Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper
Abstract
Thin films of copper oxide were obtained through thermal oxidation (100-450 degrees C) of evaporated metallic copper (Cu) films on glass substrates. The X-ray diffraction (XRD) studies confirmed the cubic Cu phase of the as-deposited films. The films annealed at 100 degrees C showed mixed Cu-Cu(2)O phase, whereas those annealed between 200 and 300 degrees C showed a single cubic Cu(2)O phase. A single monoclinic CuO phase was obtained from the films annealed between 350 and 450 degrees C. The positive sign of the Hall coefficient confirmed the p-type conductivity in the films with Cu(2)O phase. However, a relatively poor crystallinity of these films limited the p-type characteristics. The films with Cu and CuO phases show n-type conductivity. The surface of the as-deposited is smooth (RMS roughness of 1.47 nm) and comprised of uniformly distributed grains (AFM and SEM analysis). The post-annealing is found to be effective on the distribution of grains and their sizes. The poor transmittance of the as-deposited films (<1%) is increased to a maximum of similar to 80% (800 nm) on annealing at 200 degrees C. The direct allowed band gap is varied between 2.03 and 3.02 eV.