Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dumont, Thomas

  • Google
  • 1
  • 5
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007Laser-produced plasma ion characteristics in laser ablation of lithium manganate30citations

Places of action

Chart of shared publication
Lunney, James
1 / 7 shared
Lippert, Thomas
1 / 37 shared
Canulescu, Stela
1 / 57 shared
Omahony, Donagh
1 / 2 shared
Wokaun, Alexander
1 / 18 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Lunney, James
  • Lippert, Thomas
  • Canulescu, Stela
  • Omahony, Donagh
  • Wokaun, Alexander
OrganizationsLocationPeople

article

Laser-produced plasma ion characteristics in laser ablation of lithium manganate

  • Lunney, James
  • Lippert, Thomas
  • Canulescu, Stela
  • Omahony, Donagh
  • Wokaun, Alexander
  • Dumont, Thomas
Abstract

Laser ablation is widely used to assist in the fabrication of prototype lithium manganate (LiMn2O4) thin film structures for Li-ion battery electrodes via the pulsed laser deposition technique. However, films can be considerably Li and/or 0 deficient, depending the deposition conditions used. Here we present data on the ionic component of laser-produced plasma in laser ablation of lithium manganate with ns excimer laser. Plasma was monitored using an electrical Langmuir ion probe, in time-of-flight mode in conjunction with mass spectrometry to identify the dominant ionic species. Ablation in vacuum at similar to 2.5 J cm(-2) revealed the plasma's ionic component was composed primarily of singly charged Li and Mn ions. The time-of-flight data indicates significant deceleration of the plasma when ablation is carried out in an oxygen background gas pressure of the order of 10 Pa. The implications for thin film growth are considered in terms of the possible gas phase interactions and/or thin film re-sputtering yield. (c) 2007 Elsevier B.V. All rights reserved.

Topics
  • impedance spectroscopy
  • thin film
  • Oxygen
  • mass spectrometry
  • Lithium
  • gas phase
  • pulsed laser deposition
  • spectrometry
  • laser ablation