People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mclaughlin, James
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Machine Learning-Based Structural Health Monitoring Technique for Crack Detection and Localisation Using Bluetooth Strain Gauge Sensor Networkcitations
- 2018Nanostructured nitrogen doped diamond for the detection of toxic metal ions
- 2018Nanostructured nitrogen doped diamond for the detection of toxic metal ions
- 2017Novel π-conjugated iron oxide/reduced graphene oxide nanocomposites for high performance electrochemical supercapacitorscitations
- 2017Development of an embedded thin-film strain-gauge-based SHM network into 3D-woven composite structure for wind turbine bladescitations
- 2017Functional diamond like carbon (DLC) coatings on polymer for improved gas barrier performancecitations
- 2017Development of an Embedded Thin-film Strain-sensor-based SHM for Composite Tidal Turbine Blades
- 2011Structural and surface energy analysis of nitrogenated ta-C filmscitations
- 2010Effect of thin aluminum interlayer on growth and microstructure of carbon nanotubescitations
- 2010Microstructure and field emission characteristics of ZnO nanoneedles grown by physical vapor depositioncitations
- 2009Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes.citations
- 2009Substrate effects on the microstructure of hydrogenated amorphous carbon filmscitations
- 2009Glycine Adsorption onto DLC and N-DLC Thin Films Studied by XPS and AFMcitations
- 2007Intrinsic mechanical properties of ultra-thin amorphous carbon layerscitations
- 2006Measuring the thickness of ultra-thin diamond-like carbon filmscitations
- 2005Electronic properties of a-CNx thin films : An x-ray-absorption and photoemission spectroscopy studycitations
- 2005Electronic structure and photoluminescence study of silicon doped diamond like carbon (Si:DLC) thin filmscitations
- 2005Structural investigation and gas barrier performance of diamond-like carbon based films on polymer substratescitations
- 2005Spectroscopic analysis of a-C and a-CNx films prepared by ultrafast high repetition rate pulsed laser depositioncitations
- 2004Platelet adhesion on silicon modified hydrogenated amorphous carbon films.citations
- 2004Macrophage responses to vascular stent coatings.
- 2004Electronic structure and bonding properties of Si-doped hydrogenated amorphous carbon filmscitations
- 2001Electrical characteristics of nitrogen incorporated hydrogenated amorphous carboncitations
- 2001Intrinsic stress measured on ultra-thin amorphous carbon films deposited on AFM cantileverscitations
- 2001The insulating properties of a-C:H on silicon and metal substratescitations
- 2000Nitrogen doping of amorphous DLC films by rf plasma dissociated nitrogen atom surface bombardment in a vacuumcitations
- 2000The effects of Si incorporation on the microstructure and nanomechanical properties of DLC thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Intrinsic mechanical properties of ultra-thin amorphous carbon layers
Abstract
n this work, we extracted the film's hardness ( H F ) of ultra-thin diamond-like carbon layers by simultaneously taking into account the tip blunting and the substrate effect. As compared to previous approaches, which did not consider tip blunting, this resulted in marked differences (30–100%) for the H F value of the thinner carbon coatings. We find that the nature of the substrate influences this intrinsic film parameter and hence the growth mechanisms. Moreover, the H F values generally increase with film thickness. The 10 nm and 50 nm thick hydrogenated amorphous carbon (a-C:H) films deposited onto Si have H F values of, respectively, ∼26 GPa and ∼31 GPa whereas the 10 nm and 50 nm thick tetrahedral amorphous carbon (t-aC) films deposited onto Si have H F values of, respectively, ∼29 GPa and ∼38 GPa. Both the a-C:H and t-aC materials also show higher density and refractive index values for the thicker coatings, as measured, respectively by X-ray reflectometry and optical profilometry analysis. However, the Raman analysis of the a-C:H samples show bonding characteristics which are independent of the film thickness. This indicates that in these ultra-thin hydrogenated carbon films, the arrangement of sp 2 clusters does not relate directly to the hardness of the film.