People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liu, Ming
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024High dielectric filler for all-solid-state lithium metal batterycitations
- 2023Discharge performance of a high temperature phase change material with low-cost wire meshcitations
- 2023Hydrophobized MFC as Reinforcing Additive in Industrial Silica/SBR Tire Tread Compoundcitations
- 2022Cage Molecules Stabilize Lead Halide Perovskite Thin Filmscitations
- 2021Chemical degradation in Thermally Cycled Stainless Steel 316 with High-Temperature Phase Change Materialcitations
- 2019Barely Porous Organic Cages for Hydrogen Isotope Separationcitations
- 2018Investigation into the behaviour of aluminium and steel under melt/freeze cyclic conditionscitations
- 2017A eutectic salt high temperature phase change material: Thermal stability and corrosion of SS316 with respect to thermal cyclingcitations
- 2016Stability and corrosion testing of a high temperature phase change material for CSP applicationscitations
- 2016Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologiescitations
- 2015Atomic Layer Deposited Hybrid Organic-Inorganic Aluminates as Potential Low-k Dielectric Materialscitations
- 2010Electrochemical reactivity, surface composition and corrosion mechanisms of the complex metallic alloy Al 3 Mg 2citations
- 2010The influence of yttrium (Y) on the corrosion of Mg-Y binary alloyscitations
- 2009A preliminary quantitative XPS study of the surface films formed on pure magnesium and on magnesium-aluminium intermetallics by exposure to high-purity watercitations
- 2009A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg-Al intermetallics: Al 3 Mg 2 and Mg 17 Al 12citations
- 2009Calculated phase diagrams and the corrosion of die-cast Mg-Al alloyscitations
- 2008Calculated phase diagrams, iron tolerance limit, and corrosion of Mg-Al alloyscitations
Places of action
Organizations | Location | People |
---|
article
Discharge performance of a high temperature phase change material with low-cost wire mesh
Abstract
Thermal energy storage is increasingly needed in a sustainable world because of its potential of capturing waste heat and being incorporated in solar power plants. For power generation, in particular, as turbine technology advances, a demand for higher temperature thermal energy storage materials also grows. For this purpose, latent thermal energy storage fits in well since it uses phase change materials (PCMs) which generally have a higher energy density compared to their sensible heat counterparts. In the present study, a eutectic Na 2 CO 3 (41.69%)-(33.1%)KCl-(25.21%)NaCl phase change material (PCM) with a melting temperature of 569 ° C was chosen as the storage material to experimentally assess the performance benefit of using a readily available stainless steel (ss304) wire mesh (as the periodic structure) to enhance heat transfer within the domain. In addition, for discharging, a numerical model was developed and compared with the experimental results. Furthermore, for discharging, a numerical investigation of the influence of the heat transfer fluid (HTF) flow-rate to the rate of heat transfer was performed. Overall, it was experimentally observed that the charging time for the composite case was shortened by about 35%, compared to the pure PCM case. For discharging, in the axial direction, the composite solidification time when compared to the pure PCM case was on average 10% shorter. Regarding the radial discharging performance of the composite, there was only about 5% improvement compared to the pure PCM case, which was expected due to the thermal contact resistance in the radial direction. Discharging experimental results were used to validate a discharging numerical model. Discharging results from the model showed that increasing the flow rate of the heat transfer fluid (HTF) reduced the time for solidification. It was observed that for the HTF flow rate of 5 L/min, 10 L/min, 20 L/min and 30 L/min, the discharge time was shortened by 23%, 30%, 33% and 35%, respectively. ; Green Open Access added to ...