Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Efthymiou, Mike

  • Google
  • 3
  • 3
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022An efficient probabilistic framework for the long-term fatigue assessment of large diameter steel risers11citations
  • 2021A Bayesian machine learning approach to rapidly quantifying the fatigue probability of failure for steel catenary risers19citations
  • 2018An ANN-based framework for rapid spectral fatigue analysis of steel catenary riserscitations

Places of action

Chart of shared publication
Randolph, Mark
3 / 10 shared
Grime, Andrew
3 / 4 shared
Hejazi, Rasoul
3 / 4 shared
Chart of publication period
2022
2021
2018

Co-Authors (by relevance)

  • Randolph, Mark
  • Grime, Andrew
  • Hejazi, Rasoul
OrganizationsLocationPeople

article

An efficient probabilistic framework for the long-term fatigue assessment of large diameter steel risers

  • Efthymiou, Mike
  • Randolph, Mark
  • Grime, Andrew
  • Hejazi, Rasoul
Abstract

<p>Using recent advances in data analytics techniques and tools, this paper proposes a novel data-centric paradigm for riser fatigue analysis in which practitioners can efficiently make use of large hindcast and measured metocean datasets directly in the design process. In the conventional fatigue design method for offshore risers systems, in order to reduce the computational cost practitioners tend to condense large hindcast metocean datasets into small wave datasets, so-called wave scatter diagrams, to represent the long-term variation in significant wave height, H<sub>s</sub>, and peak period, T<sub>p</sub>, at a site of interest. These methods tend to predict rather conservative riser loading conditions and hence fatigue lives due to the information lost in the condensing method, which can limit the application of steel catenary and lazy wave risers (SCRs and SLWRs) with larger diameters (outside diameter, OD &gt; 18") whose design is governed by fatigue. This paper proposes enhanced frameworks for more accurate prediction of the fatigue life of SCRs and SLWRs located in swell dominant regions by enabling the direct use of large measured and hindcast metocean datasets in the fatigue design process of risers. Firstly, we introduce a novel detailed framework that uses an “ANN-based technique” with a “representative (P50) year” concept to enable large metocean datasets to be directly used for accurate estimation of riser fatigue life that is suitable for detailed design stages. Secondly, we propose an alternative innovative framework based on the use of Monte Carlo methods for more efficient long-term fatigue assessment of risers. Finally, we demonstrate the usefulness of the proposed frameworks by calculating the riser fatigue lives and comparing them against those obtained via conventional wave-condensing strategies. For the case studied here, the results show that using the proposed framework can significantly increase the estimated riser fatigue life over the values estimated using conventional wave condensing methods.</p>

Topics
  • impedance spectroscopy
  • steel
  • fatigue
  • Monte Carlo method