People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Das, D.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Stress concentration targeted reinforcement using multi-material based 3D printingcitations
- 2014A new copper(I) coordination polymer with N.sub.2./sub.-donor schiff base and Its use as precursor for CuO nanoparticle: Spectroscopic, thermal and structural studiescitations
- 2008Effect of oxygen on growth and properties of diamond thin film deposited at low surface temperaturecitations
- 2008Effect of fibre diameter and cross-sectional shape on moisture transmission through fabrics
- 2004Correlation between plasma chemistry, microstructure and electronic properties of Si:H thin films prepared by hydrogen dilution
- 2002Calorimetry of hydrogen desorption from a-Si nanoparticlescitations
- 2001Enhancement of oxidation rate of a-Si nanoparticles during dehydrogenationcitations
- 2000Synthesis of nanocrystalline nickel oxide by controlled oxidation of nickel nanoparticles and their humidity sensing properties
Places of action
Organizations | Location | People |
---|
article
Stress concentration targeted reinforcement using multi-material based 3D printing
Abstract
Topological engineering (3D printing into complex geometry) has emerged as a pragmatic approach to develop high specific strength (high strength and low density) lightweight structures. These complex lightweight structures fail at high-stress concentration regions, which can be, replaced with soft/tough material using 3D printing. It can improve mechanical properties such as strength, toughness and energy absorption etc. Here, we have developed stress concentration targeted multi-material schwarzite structures by 3D printing technique. The soft (Thermoplastic Polyurethane) material is reinforced at high-stress concentration regions of hard (Polylactic acid) schwarzite structures to enhance the specific yield strength and resilience. The mechanical properties and responses of these structures were then assessed via uniaxial compression tests. The multi-materials 3D printed composite structure shows improved mechanical properties compared to single materials architecture. The specific resilience of composites demonstrates remarkable enhancements, with percentage increases of 204.70 %, 596.50 %, and 1530.99 % observed when compared to hard primitives, and similarly impressive improvements of 182.45 %, 311.64 %, and 477.75 % observed in comparison to hard gyroids. The obtained experimental findings were comprehensively examined and validated with molecular dynamics (MD) simulations. The promising characteristics of these lightweight multi-material-based Schwarzites structures can be utilized in various fields such as energy harvesting devices, protective, safety gears, and aerospace components.