People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gjørup, Frederik Holm
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Aligned Permanent Magnet Made in Seconds–An In Situ Diffraction Studycitations
- 2024High-performance hexaferrite magnets tailored through alignment of shape-controlled nanocompositescitations
- 2023High-Performance Hexaferrite Ceramic Magnets Made from Nanoplatelets of Ferrihydrite by High-Temperature Calcination for Permanent Magnet Applicationscitations
- 2023Sintering in seconds, elucidated by millisecond in situ diffractioncitations
- 2022Understanding the Compaction of Nanopowders Through Neutron and X-ray Diffraction
- 2022Synthesis of Phase-Pure Thermochromic VO2 (M1)citations
- 2021‘Need for Speed’: Sub-second in situ diffraction to unravel rapid sintering & texture evolution in ferrite magnets
- 2021‘Need for Speed’: Sub-second in situ diffraction to unravel rapid sintering & texture evolution in ferrite magnets
- 2021Getting the most out of neutron powder diffraction
- 2020Exploring the direct synthesis of exchange-spring nanocomposites by reduction of CoFe 2 O 4 spinel nanoparticles using in situ neutron diffractioncitations
- 2020Exploring the direct synthesis of exchange-spring nanocomposites by reduction of CoFe2O4 spinel nanoparticles using in situ neutron diffractioncitations
- 2019Novel fast heating furnaces for in situ powder neutron diffraction
- 2019Novel in situ powder neutron diffraction setups – The creation of a modern magnetic compound
- 2019In Situ In-House Powder X-ray Diffraction Study of Zero-Valent Copper Formation in Supercritical Methanolcitations
- 2019In Situ In-House Powder X-ray Diffraction Study of Zero-Valent Copper Formation in Supercritical Methanolcitations
- 2019Laboratory setup for rapid in situ powder X-ray diffraction elucidating Ni particle formation in supercritical methanolcitations
- 2018Coercivity enhancement of strontium hexaferrite nano-crystallites through morphology controlled annealingcitations
Places of action
Organizations | Location | People |
---|
article
Sintering in seconds, elucidated by millisecond in situ diffraction
Abstract
Materials, when sintered at high temperatures, undergo structural changes on multiple, hierarchical length scales but getting realtime information on these changes is difficult. To address this challenge, we developed a custom-built sample environment that allows us to investigate the structural evolution of materials during sintering using high-energy two-dimensional synchrotron X-ray diffraction (2D-XRD). Changes in the structure of SrFe 12 O 19 ceramic magnet at multiple length scales were tracked in situ and modelled with millisecond time-resolution. In addition, we also demonstrated the ability to perform quantitative texture analysis from individual 2D-XRD images with a time resolution of 4 ms each. Owing to the high brightness X-ray source and advanced X-ray detectors, the evolution of crystallographic texture could be followed during sintering. This in situ approach can aid understanding of the synthesis–structure–property relationships in sintered materials, enabling the development of improved functional materials.