People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mørch, Mathias I.
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Aligned Permanent Magnet Made in Seconds–An In Situ Diffraction Studycitations
- 2024Aligned Permanent Magnet Made in Seconds:An In Situ Diffraction Studycitations
- 2023Sintering in seconds, elucidated by millisecond in situ diffractioncitations
- 2022Exploiting different morphologies of non-ferromagnetic interacting precursor’s for preparation of hexaferrite magnetscitations
- 2022Combined characterization approaches to investigate magnetostructural effects in exchange-spring ferrite nanocomposite magnetscitations
- 2021‘Need for Speed’: Sub-second in situ diffraction to unravel rapid sintering & texture evolution in ferrite magnets
- 2021‘Need for Speed’: Sub-second in situ diffraction to unravel rapid sintering & texture evolution in ferrite magnets
- 2019Novel fast heating furnaces for in situ powder neutron diffraction
- 2019Structure and magnetic properties of W-type hexaferritescitations
- 2019Novel in situ powder neutron diffraction setups – The creation of a modern magnetic compound
Places of action
Organizations | Location | People |
---|
article
Sintering in seconds, elucidated by millisecond in situ diffraction
Abstract
Materials, when sintered at high temperatures, undergo structural changes on multiple, hierarchical length scales but getting realtime information on these changes is difficult. To address this challenge, we developed a custom-built sample environment that allows us to investigate the structural evolution of materials during sintering using high-energy two-dimensional synchrotron X-ray diffraction (2D-XRD). Changes in the structure of SrFe 12 O 19 ceramic magnet at multiple length scales were tracked in situ and modelled with millisecond time-resolution. In addition, we also demonstrated the ability to perform quantitative texture analysis from individual 2D-XRD images with a time resolution of 4 ms each. Owing to the high brightness X-ray source and advanced X-ray detectors, the evolution of crystallographic texture could be followed during sintering. This in situ approach can aid understanding of the synthesis–structure–property relationships in sintered materials, enabling the development of improved functional materials.