People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bai, Yang
University of Edinburgh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Study on Growth of Tungsten Bronze Phase from Niobate Perovskite Ceramics in Controlled Atmosphere for Photoferroelectric Applicationscitations
- 2022Hierarchical nature of hydrogen-based direct reduction of iron oxidescitations
- 2021Fluorination of pyrene-based organic semiconductors enhances the performance of light emitting diodes and halide perovskite solar cellscitations
- 2021Time-resolved Raman spectroscopy of polaron formation in a polymer photocatalystcitations
- 2021Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol A degradationcitations
- 2021Formulation, adsorption performance, and mechanical integrity of triamine grafted binder-based mesoporous silica pellets for CO2 capturecitations
- 2020Fluorination of pyrene-based organic semiconductors enhances the performance of light emitting diodes and halide perovskite solar cellscitations
- 2020Fluorination of pyrene-based organic semiconductors enhances the performance of light emitting diodes and halide perovskite solar cellscitations
- 2019New ferroelectric perovskite ceramics with low losses for applications in microwave antennas
Places of action
Organizations | Location | People |
---|
article
Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol A degradation
Abstract
Bismuth vanadate (BiVO4) is a widely studied photocatalyst for the depollution of contaminated wastewater, production of hydrogen by water splitting, and organic synthesis. The photophysical properties of BiVO4 are sensitive to morphology and quantum confinement effects, and can exhibit enhanced photocatalytic performance in nanocomposites with graphene. Synthesis of hierarchical BiVO4 plates decorated by nanoparticles (h-BiVO4) in contact with reduced graphene oxide (RGO) is reported via a facile one-pot solution phase approach using ethanolamine and a polyethylene glycol stabilizer. The resulting h-BiVO4/RGO photocatalyst exhibited superior photoactivity for bisphenol A (BPA) degradation and hydrogen evolution under visible light irradiation compared to single component h-BiVO4 or a μm-sized block-like BiVO4 morphology. Rates of BPA photocatalytic degradation and apparent quantum efficiency (AQE) decreased in the order h-BiVO4/RGO (4.5 × 10−2 mmol.g−1.min−1; 15.1% AQE) > h-BiVO4 (3.5 × 10−2 mmol.g−1.min−1; 11.7% AQE) > BiVO4 (1 × 10−2 mmol.g−1.min−1; 3.4% AQE), representing a 4.5 fold enhancement for h-BiVO4/RGO versus BiVO4. Liquid phase photodegradation products included benzene-1,4-diol, cyclohexa-2,5-diene-1,4-dione and (2Z)-but-2-enedioic acid. The rate of photocatalytic hydrogen production under visible light was 11.5 µmol.g−1.h−1 for h-BiVO4/RGO, ~383.3 times greater than for BiVO4 (0.03µmol.g−1.h−1). The superior photocatalytic performance of h-BiVO4/RGO is largely attributed to its higher surface area, aided by enhanced visible light absorption and charge separation across the semiconductor-RGO interface, which together confer a higher density and lifetime of photoexcited charge carriers.