People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nag, Anindya
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Novel Surfactant-Induced MWCNTs/PDMS-Based Nanocomposites for Tactile Sensing Applicationscitations
- 2022Carbon fiber/polymer-based composites for wearable sensorscitations
- 2022A Critical Review of the Use of Graphene-Based Gas Sensorscitations
- 2021Recent progress in the fabrication of graphene fibers and their composites for applications of monitoring human activitiescitations
- 2021Multi-walled carbon nanotubes-based sensors for strain sensing applicationscitations
- 2019Laser-assisted printed flexible sensorscitations
- 2019Multifunctional flexible sensor based on laser-induced graphenecitations
- 2018Development of printed sensors for shoe sensing applicationscitations
- 2018Fabrication and implementation of printed sensors for taste sensing applicationscitations
- 2017Flexible printed sensors for ubiquitous human monitoringcitations
- 2017Development of printed sensors for taste sensingcitations
- 2017Sensing system for salinity testing using laser-induced graphene sensorscitations
- 2016Improved detection limits for phthalates by selective solid-phase micro-extractioncitations
- 2016Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoringcitations
- 2016Transparent biocompatible sensor patches for touch sensitive prosthetic limbscitations
Places of action
Organizations | Location | People |
---|
article
Recent progress in the fabrication of graphene fibers and their composites for applications of monitoring human activities
Abstract
<p>This paper elucidates the work done using highly efficient graphene fibers and related composites for human activities monitoring applications. It explains how the graphene fibers have been fabricated and implemented for various activity monitoring purposes. The significances of graphene fibers lie in their exceptional mechanical and functional performances for sensing applications. These materials have been developed by processing a range of carbon-based allotropes like graphite and liquid crystals. These fibers are used in their pure and composite forms to develop a range of sensing prototypes, both invasive and non-invasive, thus playing a pivotal role in their chosen applications. The operating mechanisms of these graphene fiber-based sensors were based on electrochemical, strain and electrical sensing, where the minuscule changes in the input analyte were detected with high efficiency. The paper highlights some of the challenges existing with the current GFs-based sensors. It also showcases a market survey to estimate the increase in graphene fibers' usage to develop prototypes for different sensing applications.</p>