Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Worrall, Stephen D.

  • Google
  • 10
  • 26
  • 251

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Block copolymer synthesis in ionic liquid via polymerisation-induced self-assembly: A convenient route to gel electrolytes6citations
  • 2018Anodic dissolution growth of metal-organic framework HKUST-1 monitored:Via in situ electrochemical atomic force microscopycitations
  • 2018Anodic dissolution growth of metal-organic framework HKUST-1 monitored via in situ electrochemical atomic force microscopy17citations
  • 2018Anodic dissolution growth of metal-organic framework HKUST-1 monitored via in situ electrochemical atomic force microscopy17citations
  • 2017Electronic structure design for nanoporous, electrically conductive zeolitic imidazolate frameworkscitations
  • 2017Electronic structure design for nanoporous, electrically conductive zeolitic imidazolate frameworks52citations
  • 2017Electronic structure design for nanoporous, electrically conductive zeolitic imidazolate frameworks52citations
  • 2017Hydrogen Evolution at Liquid|Liquid Interfaces Catalysed by 2D Materials32citations
  • 2017Hydrogen evolution and capacitance behavior of Au/Pd nanoparticle-decorated graphene heterostructures22citations
  • 2016Metal-organic framework templated electrodeposition of functional gold nanostructures53citations

Places of action

Chart of shared publication
Topham, Paul D.
1 / 29 shared
Derry, Matthew
1 / 7 shared
Liu, Mingyu
1 / 1 shared
Maitland, Georgia Lucy
1 / 1 shared
Hammerton, James
1 / 1 shared
Neal, Thomas
1 / 1 shared
Han, Yisong
1 / 17 shared
Attfield, Martin P.
3 / 12 shared
Bissett, Mark A.
5 / 20 shared
Dryfe, Robert A. W.
3 / 17 shared
Attfield, Martin
4 / 8 shared
Hendon, Christopher H.
3 / 6 shared
Molloy, Christopher D.
3 / 3 shared
Dryfe
1 / 1 shared
Walsh, Aron
3 / 79 shared
Butler, Keith T.
3 / 18 shared
Hirunpinyopas, Wisit
1 / 1 shared
Rodgers, Andrew
1 / 3 shared
Toth, Peter S.
1 / 8 shared
Velický, Matěj
1 / 4 shared
Haigh, Sarah J.
1 / 15 shared
Slater, Thomas J. A.
1 / 15 shared
Haigh, Sj
1 / 63 shared
Hill, Patrick
1 / 3 shared
Rooney, Aidan
1 / 4 shared
Chart of publication period
2024
2018
2017
2016

Co-Authors (by relevance)

  • Topham, Paul D.
  • Derry, Matthew
  • Liu, Mingyu
  • Maitland, Georgia Lucy
  • Hammerton, James
  • Neal, Thomas
  • Han, Yisong
  • Attfield, Martin P.
  • Bissett, Mark A.
  • Dryfe, Robert A. W.
  • Attfield, Martin
  • Hendon, Christopher H.
  • Molloy, Christopher D.
  • Dryfe
  • Walsh, Aron
  • Butler, Keith T.
  • Hirunpinyopas, Wisit
  • Rodgers, Andrew
  • Toth, Peter S.
  • Velický, Matěj
  • Haigh, Sarah J.
  • Slater, Thomas J. A.
  • Haigh, Sj
  • Hill, Patrick
  • Rooney, Aidan
OrganizationsLocationPeople

article

Hydrogen evolution and capacitance behavior of Au/Pd nanoparticle-decorated graphene heterostructures

  • Toth, Peter S.
  • Velický, Matěj
  • Worrall, Stephen D.
  • Haigh, Sarah J.
  • Slater, Thomas J. A.
Abstract

The outstanding properties of two-dimensional materials such as graphene offer the possibility to produce novel hybrid materials with boosted functionality for use in catalysis and electrochemical energy storage. The hydrogen evolution reaction and interfacial capacitance performance of monolayer graphene sheets decorated with various metal nanoparticles are studied herein. Chemical vapor deposition grown graphene monolayer was decorated with Au and/or Pd nanoparticles, either on one-side or both-sides, forming single- or bi-metal graphene heterostructures. These asymmetrically-decorated graphene nanocomposites were characterized using high-resolution transmission electron microscopy and 3D electron tomography. Electrochemical characterization reveals enhanced hydrogen evolution activity and outstanding capacitance for the resultant composite materials in comparison to pristine graphene and other recently developed graphene-based energy storage devices.

Topics
  • nanoparticle
  • nanocomposite
  • tomography
  • Hydrogen
  • transmission electron microscopy
  • two-dimensional
  • forming
  • interfacial
  • chemical vapor deposition