Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Foster, Jamie Michael

  • Google
  • 6
  • 32
  • 1129

University of Portsmouth

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2018Systematic derivation of a surface polarization model for planar perovskite solar cells28citations
  • 2018A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy motion in perovskite solar cells68citations
  • 2017Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells622citations
  • 2017A mathematical model for mechanically-induced deterioration of the binder in lithium-ion electrodes15citations
  • 2015Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer-layer377citations
  • 2015Phosphonic anchoring groups in organic dyes for solid-state solar cells19citations

Places of action

Chart of shared publication
Courtier, N. E.
2 / 2 shared
Richardson, G.
3 / 3 shared
Okane, S. E. J.
1 / 1 shared
Walker, A. B.
1 / 1 shared
Petrozza, Annamaria
2 / 28 shared
Saliba, Michael
1 / 33 shared
Matsui, Taisuke
1 / 2 shared
Tress, Wolfgang
1 / 11 shared
Gräztel, Michael
1 / 1 shared
Roose, Bart
1 / 11 shared
Nazeeruddin, Mohammad K.
1 / 1 shared
Ball, James M.
1 / 8 shared
Angelis, Filippo De
1 / 30 shared
Turren-Cruz, Silver-Hamill
1 / 2 shared
Domanski, Konrad
1 / 3 shared
Hagfeldt, Anders
1 / 20 shared
Abate, Antonio
3 / 57 shared
Mine, Nicolas
1 / 2 shared
Richardson, Giles
2 / 11 shared
Steiner, Ullrich
2 / 42 shared
Correa-Baena, Juan-Pablo
1 / 10 shared
Carmona, Cristina Roldan
1 / 1 shared
Protas, Bartosz
1 / 1 shared
Chapman, S. J.
1 / 1 shared
Snaith, Henry J.
2 / 58 shared
Zhang, Wei
1 / 54 shared
Guarnera, Simone
1 / 3 shared
Wojciechowski, Konrad
1 / 9 shared
Sadhanala, Aditya
1 / 29 shared
Franco, Santiago
1 / 2 shared
Pérez-Tejada, Raquel
1 / 2 shared
Ordunac, Jesús
1 / 1 shared
Chart of publication period
2018
2017
2015

Co-Authors (by relevance)

  • Courtier, N. E.
  • Richardson, G.
  • Okane, S. E. J.
  • Walker, A. B.
  • Petrozza, Annamaria
  • Saliba, Michael
  • Matsui, Taisuke
  • Tress, Wolfgang
  • Gräztel, Michael
  • Roose, Bart
  • Nazeeruddin, Mohammad K.
  • Ball, James M.
  • Angelis, Filippo De
  • Turren-Cruz, Silver-Hamill
  • Domanski, Konrad
  • Hagfeldt, Anders
  • Abate, Antonio
  • Mine, Nicolas
  • Richardson, Giles
  • Steiner, Ullrich
  • Correa-Baena, Juan-Pablo
  • Carmona, Cristina Roldan
  • Protas, Bartosz
  • Chapman, S. J.
  • Snaith, Henry J.
  • Zhang, Wei
  • Guarnera, Simone
  • Wojciechowski, Konrad
  • Sadhanala, Aditya
  • Franco, Santiago
  • Pérez-Tejada, Raquel
  • Ordunac, Jesús
OrganizationsLocationPeople

article

A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy motion in perovskite solar cells

  • Courtier, N. E.
  • Foster, Jamie Michael
  • Richardson, G.
Abstract

Drift-diffusion models that account for the motion of ion vacancies and electronic charge carriers are important tools for explaining the behaviour, and guiding the development, of metal halide perovskite solar cells. Computing numerical solutions to such models in realistic parameter regimes, where the short Debye lengths give rise to boundary layers in which the solution varies extremely rapidly, is challenging. Two suitable numerical methods, that can effectively cope with the spatial stiffness inherent to such problems, are presented and contrasted (a finite element scheme and a finite difference scheme). Both schemes are based on an appropriate choice of non-uniform spatial grid that allows the solution to be computed accurately in the boundary layers. An adaptive time step is employed in order to combat a second source of stiffness, due to the disparity in timescales between the motion of the ion vacancies and electronic charge carriers. It is found that the finite element scheme provides significantly higher accuracy, in a given compute time, than both the finite difference scheme and some previously used alternatives (Chebfun and pdepe). An example transient sweep of a current-voltage curve for realistic parameter values can be computed using this finite element scheme in only a few seconds on a standard desktop computer.

Topics
  • perovskite
  • impedance spectroscopy
  • vacancy