People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Foster, Jamie Michael
University of Portsmouth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2018Systematic derivation of a surface polarization model for planar perovskite solar cellscitations
- 2018A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy motion in perovskite solar cellscitations
- 2017Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cellscitations
- 2017A mathematical model for mechanically-induced deterioration of the binder in lithium-ion electrodescitations
- 2015Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer-layercitations
- 2015Phosphonic anchoring groups in organic dyes for solid-state solar cellscitations
Places of action
Organizations | Location | People |
---|
article
A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy motion in perovskite solar cells
Abstract
Drift-diffusion models that account for the motion of ion vacancies and electronic charge carriers are important tools for explaining the behaviour, and guiding the development, of metal halide perovskite solar cells. Computing numerical solutions to such models in realistic parameter regimes, where the short Debye lengths give rise to boundary layers in which the solution varies extremely rapidly, is challenging. Two suitable numerical methods, that can effectively cope with the spatial stiffness inherent to such problems, are presented and contrasted (a finite element scheme and a finite difference scheme). Both schemes are based on an appropriate choice of non-uniform spatial grid that allows the solution to be computed accurately in the boundary layers. An adaptive time step is employed in order to combat a second source of stiffness, due to the disparity in timescales between the motion of the ion vacancies and electronic charge carriers. It is found that the finite element scheme provides significantly higher accuracy, in a given compute time, than both the finite difference scheme and some previously used alternatives (Chebfun and pdepe). An example transient sweep of a current-voltage curve for realistic parameter values can be computed using this finite element scheme in only a few seconds on a standard desktop computer.