People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nguyen, Vu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Advances in Additive Manufacturing of Auxetic Structures for Biomedical Applicationscitations
- 2024Analysis of self-supporting conformal cooling channels additively manufactured by hybrid directed energy deposition for IM toolingcitations
- 2023Advances in Multiscale Modelling of Metal Additive Manufacturing
- 2023Osseointegrability of 3D-printed porous titanium alloy implant on tibial shaft bone defect in rabbit modelcitations
- 2022Directed-energy deposition (DED) of Ti-6Al-4V alloy using fresh and recycled feedstock powders under reactive atmosphere
- 2021Progress Towards a Complete Model of Metal Additive Manufacturingcitations
- 2019Measurement of Laser Absorptivity by Calibrated Melt Pool Simulation
- 2019Residual Stress in Additive Manufacture
- 2018Accelerating Experimental Design by Incorporating Experimenter Hunchescitations
- 2017Modelling Powder Flow in Metal Additive Manufacturing Systems
- 2017A desktop computer model of the arc, weld pool and workpiece in metal inert gas weldingcitations
- 2017Aiming for modeling-assisted tailored designs for additive manufacturingcitations
- 2015A desktop computer model of arc welding using a CFD approach
- 2015Prediction of springback in anisotropic sheet metals: The effect of orientation and frictioncitations
- 2011Modelling die filling in ultra-thin aluminium die castings
- 20113D thermo-mechanical modelling of wheel and belt continuous castingcitations
Places of action
Organizations | Location | People |
---|
article
A desktop computer model of the arc, weld pool and workpiece in metal inert gas welding
Abstract
A sophisticated computational model of metal inert gas arc welding of aluminium alloys is presented. The arc plasma, the wire electrode and the workpiece are included in the computational domain self-consistently. The flow in the arc plasma and in the weld pool are calculated in three dimensions using equations of computational fluid dynamics, modified to take into account plasma effects and coupled to electromagnetic equations. The formation of metal vapour from the wire electrode and workpiece is considered, as is the mixing of the wire electrode alloy with the workpiece alloy in the weld pool. A graphical user interface (GUI) has been developed, and the model runs on standard desktop or laptop computers. The computational model is described, and results are presented for lap-fillet weld geometry. The importance of including the arc in the computational domain is shown. The predictions of the model show good agreement with measurements of weld geometry and weld composition. The GUI is introduced, and the application of the model to predicting the thermal history of the workpiece, which is the input information that is required for predicting important weld properties such as residual stress and distortion and weld microstructure, is discussed. Initial predictions of residual stress and distortion of the workpiece are presented.