People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Adhikari, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2022Unfolding the mechanical properties of buckypaper composites: nano- to macro-scale coupled atomistic-continuum simulationscitations
- 2022Towards a novel application of wastewater-based epidemiology in population-wide assessment of exposure to volatile organic compounds.citations
- 2021Broadband dynamic elastic moduli of honeycomb lattice materials: a generalized analytical approachcitations
- 2021Voltage-dependent modulation of elastic moduli in lattice metamaterialscitations
- 2020Probing the Effective Young's Modulus of ‘Magic Angle’ Inspired Multi‐Functional Twisted Nano‐Heterostructurescitations
- 2019Probing the frequency-dependent elastic moduli of lattice materialscitations
- 2019Frequency domain homogenization for the viscoelastic properties of spatially correlated quasi-periodic latticescitations
- 2018Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructurescitations
- 2018Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructurescitations
- 2017Stochastic mechanics of metamaterialscitations
- 2017Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical propertiescitations
- 2017Metamodel based high-fidelity stochastic analysis of composite laminatescitations
- 2016Free-vibration analysis of sandwich panels with randomly irregular honeycomb corecitations
- 2016Fuzzy uncertainty propagation in composites using Gram-Schmidt polynomial chaos expansioncitations
- 2016Probabilistic analysis and design of HCP nanowirescitations
- 2016Pullout strength of graphene and carbon nanotube/epoxy compositescitations
- 2016Effective in-plane elastic properties of auxetic honeycombs with spatial irregularitycitations
- 2016Equivalent in-plane elastic properties of irregular honeycombs: an analytical approachcitations
- 2016Equivalent in-plane elastic properties of irregular honeycombscitations
- 2016Bottom up surrogate based approach for stochastic frequency response analysis of laminated composite platescitations
- 2015Stochastic natural frequency of composite conical shellscitations
- 2010Nanocomposites with auxetic nanotubescitations
- 2010Vibration and symmetry-breaking of boron nitride nanotubescitations
- 2009Effective elastic mechanical properties of single layer graphene sheetscitations
Places of action
Organizations | Location | People |
---|
article
Fuzzy uncertainty propagation in composites using Gram-Schmidt polynomial chaos expansion
Abstract
<p>The propagation of uncertainty in composite structures possesses significant computational challenges. Moreover, probabilistic descriptions of uncertain model parameters are not always available due to lack of data. This paper investigates on the uncertainty propagation in dynamic characteristics (such as natural frequencies, frequency response function and mode shapes) of laminated composite plates by using fuzzy approach. In the proposed methodology, non-intrusive Gram-Schmidt polynomial chaos expansion (GPCE) method is adopted in uncertainty propagation of structural uncertainty to dynamic analysis of composite structures, when the parameter uncertainties represented by fuzzy membership functions. A domain in the space of input data at zero-level of membership functions is mapped to a zone of output data with the parameters determined by D-optimal design. The obtained meta-model (GPCE) can also be used for higher α-levels of fuzzy membership function. The most significant input parameters such as ply orientation angle, elastic modulus, mass density and shear modulus are identified and then fuzzified. The proposed fuzzy approach is applied to the problem of fuzzy modal analysis for frequency response function of a simplified composite cantilever plates. The fuzzy mode shapes are also depicted for a typical laminate configuration. Fuzzy analysis of the first three natural frequencies is presented to illustrate the results and its performance. The proposed approach is found more efficient compared to the conventional global optimization approach in terms of computational time and cost.</p>