Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vu, Hong Phuc

  • Google
  • 1
  • 3
  • 57

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Partitioning of Pb(II) during goethite and hematite crystallization: Implications for Pb transport in natural systems57citations

Places of action

Chart of shared publication
Brinza, Loredana
1 / 1 shared
Shaw, Samuel
1 / 9 shared
Benning, Liane G.
1 / 3 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Brinza, Loredana
  • Shaw, Samuel
  • Benning, Liane G.
OrganizationsLocationPeople

article

Partitioning of Pb(II) during goethite and hematite crystallization: Implications for Pb transport in natural systems

  • Brinza, Loredana
  • Shaw, Samuel
  • Benning, Liane G.
  • Vu, Hong Phuc
Abstract

The interaction (e.g., adsorption and incorporation) of Pb with iron(III) (oxyhydr)oxide minerals has a significant influence on its partitioning and transport in many natural systems (e.g., rivers). The incorporation of Pb during ferrihydrite crystallization to hematite and goethite at neutral and alkaline pH, in the presence and absence of sulphate SO42- has been studied using X-ray Absorption Spectroscopy (XAS), X-ray Powder Diffraction (XRD), electron microscopic techniques and chemical extraction procedures. The XRD data showed that hematite and goethite were the end-products of crystallization at pH 5, whereas goethite was the sole product at pH 13. The Pb partitioning data revealed that upon crystallization at pH 5, ~60% of the initially adsorbed Pb remained on the surface of the crystalline hematite/goethite, while ~20% became incorporated with the remaining ~20% released back into solution. Lead incorporation occurred primarily during the initial stage of ferrihydrite crystallization prior to hematite/goethite formation at pH 5. The presence of SO42- at pH 5 had little influence on the partitioning of Pb or mineral phases formed. At pH 13, 52% of the adsorbed Pb was incorporated during crystallization to goethite. Lead incorporation into this phase occurred over the entire crystallization process with adsorbed Pb incorporated during goethite crystal growth. X-ray Absorption Spectroscopy and unit cell size data demonstrated that Pb did not replace Fe within the structure of hematite or goethite, but was incorporated into defects or nanopores within the iron (oxyhydr)oxides. © 2013 .

Topics
  • mineral
  • surface
  • phase
  • x-ray diffraction
  • extraction
  • defect
  • iron
  • crystallization
  • x-ray absorption spectroscopy