Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baron, Gino

  • Google
  • 12
  • 57
  • 572

Vrije Universiteit Brussel

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2024Structure I methane hydrate confined in C8-grafted SBA-1511citations
  • 2023Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device11citations
  • 2020Evaluation of particle and bed integrity of aqueous size-exclusion columns packed with sub-2 µm particles operated at high pressure4citations
  • 2020Selection of binder recipes for the formulation of MOFs into resistant pellets for molecular separations by fixed-bed adsorption27citations
  • 2019Highly Robust MOF Polymeric Beads with a Controllable Size for Molecular Separations55citations
  • 2019Exceptional HCl removal from Hydrogen gas by Reactive Adsorption on a Metal-Organic Frameworkcitations
  • 2019Study of peak capacities generated by a porous layered radially elongated pillar array column coupled to a nano-LC system7citations
  • 2017Gel-based morphological design of zirconium metal-organic frameworks228citations
  • 2016The effect of crystal diversity of nanoporous materials on mass transfer studiescitations
  • 2015The role of crystal diversity in understanding mass transfer in nanoporous materials168citations
  • 2015Poster: A comprehensive study of the macro- and mesopores size distributions of polymer monoliths using complementary physical characterization techniquescitations
  • 2015Polyimide mixed matrix membranes for CO2 separations using carbon-silica nanocomposite fillers61citations

Places of action

Chart of shared publication
Houlleberghs, Maarten
1 / 1 shared
Ciocarlan, Radu George
1 / 1 shared
Beckwée, Emile Jules
1 / 1 shared
Denayer, Joeri
9 / 17 shared
Cool, Pegie
1 / 9 shared
Hanssens, Lucas
1 / 1 shared
Martens, Johan
1 / 17 shared
Chandran, C. Vinod
1 / 2 shared
Breynaert, Eric
1 / 5 shared
Radhakrishnan, Sambhu
1 / 2 shared
Belka, Mariusz
1 / 1 shared
Bączek, Tomasz
1 / 1 shared
Mikolaszek, Barbara
1 / 1 shared
Ulenberg, Szymon
1 / 1 shared
Georgiev, Paweł
1 / 1 shared
Desmet, Gert
2 / 12 shared
Szynkiewicz, Dagmara
1 / 1 shared
Hejna, Aleksander
1 / 10 shared
Eeltink, Sebastiaan
2 / 6 shared
Terryn, Herman
4 / 124 shared
Wirth, Mary J.
1 / 1 shared
Vos, Jelle De
1 / 1 shared
Kaal, Erwin
1 / 1 shared
Jabbour, Christia
1 / 2 shared
Finoulst, Anne-Lore
1 / 1 shared
Cousin-Saint-Remi, Julien
3 / 3 shared
Goderis, Steven
1 / 3 shared
Segato, Tiriana
1 / 1 shared
Perre, Stijn Van Der
1 / 1 shared
Delplancke, Marie-Paule
1 / 2 shared
Ottevaere, Heidi
1 / 16 shared
Hara, Takeshi
1 / 1 shared
Futagami, Shunta
1 / 1 shared
Malsche, Wim De
1 / 4 shared
Bennett, Thomas
1 / 10 shared
Bueken, Bart
1 / 6 shared
Velthoven, Niels Van
1 / 1 shared
Stassen, Ivo
1 / 11 shared
Ameloot, Rob
1 / 28 shared
Stassin, Timothee
1 / 2 shared
Vos, Dirk De
1 / 15 shared
Willhammar, Tom
1 / 7 shared
Bals, Sara
1 / 93 shared
Keen, David A.
1 / 29 shared
Remi, Julien Cousin Saint
2 / 2 shared
Lauerer, Alexander
2 / 4 shared
Kärger, Jörg
2 / 12 shared
Chmelik, Christian
2 / 10 shared
Vandendael, Isabelle
1 / 10 shared
Wouters, Sam
1 / 1 shared
Anjum, Mohammad Waqas
1 / 1 shared
Didden, Jeroen
1 / 2 shared
Clippel, Filip De
1 / 1 shared
Vankelecom, Ivo
1 / 12 shared
Couck, Sarah
1 / 5 shared
Khan, Asim Laeeq
1 / 1 shared
Sels, Bert
1 / 5 shared
Chart of publication period
2024
2023
2020
2019
2017
2016
2015

Co-Authors (by relevance)

  • Houlleberghs, Maarten
  • Ciocarlan, Radu George
  • Beckwée, Emile Jules
  • Denayer, Joeri
  • Cool, Pegie
  • Hanssens, Lucas
  • Martens, Johan
  • Chandran, C. Vinod
  • Breynaert, Eric
  • Radhakrishnan, Sambhu
  • Belka, Mariusz
  • Bączek, Tomasz
  • Mikolaszek, Barbara
  • Ulenberg, Szymon
  • Georgiev, Paweł
  • Desmet, Gert
  • Szynkiewicz, Dagmara
  • Hejna, Aleksander
  • Eeltink, Sebastiaan
  • Terryn, Herman
  • Wirth, Mary J.
  • Vos, Jelle De
  • Kaal, Erwin
  • Jabbour, Christia
  • Finoulst, Anne-Lore
  • Cousin-Saint-Remi, Julien
  • Goderis, Steven
  • Segato, Tiriana
  • Perre, Stijn Van Der
  • Delplancke, Marie-Paule
  • Ottevaere, Heidi
  • Hara, Takeshi
  • Futagami, Shunta
  • Malsche, Wim De
  • Bennett, Thomas
  • Bueken, Bart
  • Velthoven, Niels Van
  • Stassen, Ivo
  • Ameloot, Rob
  • Stassin, Timothee
  • Vos, Dirk De
  • Willhammar, Tom
  • Bals, Sara
  • Keen, David A.
  • Remi, Julien Cousin Saint
  • Lauerer, Alexander
  • Kärger, Jörg
  • Chmelik, Christian
  • Vandendael, Isabelle
  • Wouters, Sam
  • Anjum, Mohammad Waqas
  • Didden, Jeroen
  • Clippel, Filip De
  • Vankelecom, Ivo
  • Couck, Sarah
  • Khan, Asim Laeeq
  • Sels, Bert
OrganizationsLocationPeople

article

Structure I methane hydrate confined in C8-grafted SBA-15

  • Houlleberghs, Maarten
  • Ciocarlan, Radu George
  • Beckwée, Emile Jules
  • Denayer, Joeri
  • Cool, Pegie
  • Hanssens, Lucas
  • Baron, Gino
  • Martens, Johan
  • Chandran, C. Vinod
  • Breynaert, Eric
  • Radhakrishnan, Sambhu
Abstract

<p>Confinement of water and methane in mesopores of hydrophobized SBA-15 is demonstrated to promote methane hydrate formation. In comparison to as-synthesized SBA-15, hydrophobization by C<sub>8</sub> grafting accelerates the kinetics of methane storage in and delivery from the hydrate. C<sub>8</sub> grafting density was determined at 0.5 groups nm<sup>−2</sup> based on TGA and quantitative NMR spectroscopy. Multinuclear <sup>1</sup>H-<sup>1</sup>H DQSQ and <sup>1</sup>H-<sup>1</sup>H RFDR NMR provided spectroscopic evidence for the occurrence of C<sub>8</sub> chains inside the mesopores of SBA-15, by showcasing close spatial proximity between the grafted C<sub>8</sub> chains and pore-intruded water species. X-ray diffraction demonstrates formation of Structure I hydrate on SBA-15 C<sub>8</sub>. At 7.0 MPa and 248 K, the water-to-hydrate conversion on hydrophobized SBA-15 C<sub>8</sub> reaches 96% as compared to only 71% on a pristine SBA-15 sample with comparable pore size, pore volume and surface area. The clathrate loading amounted to 14.8 g/g. 2D correlation NMR spectroscopy (<sup>1</sup>H-<sup>13</sup>C CP-HETCOR, <sup>1</sup>H-<sup>1</sup>H RFDR) reveals hydrate formation occurs within pores of SBA-15 C<sub>8</sub> as well as in interparticle volumes. Following the initial crystallization of SBA-15 C<sub>8</sub>-supported methane hydrate taking several hours, a pressure swing process at 248 K allows to desorb and re-adsorb methane from the structure within minutes and without thawing the frozen water structure. Fast loading and unloading of methane was achieved in 19 subsequent cycles without losses in kinetics. The ability to harvest the gas and regenerate the structure without the need to re-freeze the water represents a 50% energy gain with respect to melting and subsequently recrystallizing the hydrate at 298 K and 248 K, respectively. After methane desorption, a small amount of residual methane hydrate in combination with an amorphous yet locally ordered ice phase is observed using <sup>13</sup>C and <sup>2</sup>H NMR spectroscopy. This effect offers an explanation for the enhanced hydrate formation kinetics in adsorption-desorption cycles. These findings open new perspectives for clathrate hydrate-based methane storage.</p>

Topics
  • density
  • impedance spectroscopy
  • pore
  • surface
  • amorphous
  • phase
  • x-ray diffraction
  • thermogravimetry
  • Nuclear Magnetic Resonance spectroscopy
  • crystallization