People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rezaniakolaei, Alireza
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Online Condition Monitoring of Rotating Machines by Self-Powered Piezoelectric Transducer from Real-Time Experimental Investigationscitations
- 2021The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurementscitations
- 2020Design Optimization of Waste Heat Recovery System around Cement Rotary Kilncitations
- 2020A comprehensive electromechanically coupled model for non-uniform piezoelectric energy harvesting composite laminatescitations
- 2020A broadband macro-fiber-composite piezoelectric energy harvester for higher energy conversion from practical wideband vibrationscitations
- 2019Temperature Control of IGBTs by Thermoelectric Coolercitations
- 2019On the effect of driving amplitude, frequency and frequency-amplitude interaction on piezoelectric generated power for MFC unimorph
- 2019An Experimental Study on Macro Piezoceramic Fiber Composites for Energy Harvestingcitations
- 2017Experimental Investigation of Zinc Antimonide Thin Film Thermoelectric Element over Wide Range of Operating Conditionscitations
- 2016Experimental Investigation of Zinc Antimonide Thin Films under Different Thermal Boundary Conditions
- 2016Power Generation by Zinc Antimonide Thin Film under Various Load Resistances at its Critical Operating Temperature
Places of action
Organizations | Location | People |
---|
article
The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurements
Abstract
Knowing the nature of damping in piezoelectric energy harvesters can lead to proper damping and electromechanical models and designing highly efficient harvesters with less damping. As an attempt toward a better understanding of damping in piezoelectric energy harvesters, this paper presents experimental results for structural and viscous air damping coefficients extracted directly from voltage measurements under shock-induced tests. Free-vibration excitations are analyzed using the modified Short-Term Fourier Transform and Resampling method. Seven cases are studied, namely Macro Fiber Composite with different substrate shims, different bonding layers, and with or without a tip mass. The damping coefficients can be reliably extracted using an up-chirp driving signal and analyzing the system's decay curve, without the need for full measurement of harmonic response over a wide frequency range. The results also indicate that the damping coefficient is not independent of the base excitation amplitude and can increase up to 30%. The relative significance of viscous air damping and structural damping mechanisms is identified in each case. The dependency of viscous air damping on the base excitation amplitude is also evaluated. The experimental results highlight the significance of the bonding layer in structural damping, which can account for approximately 60% of the total damping. In the absence of a substrate shim and bonding layer, the main contribution to energy dissipation is viscous air damping. While an added tip mass increases the output power, it also escalates the viscous air damping to approximately 40% due to increased beam tip deflection.