People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shi, Junjie
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Amorphous carbon modulated-quantum dots NiO for efficient oxygen evolution in anion exchange membrane water electrolyzercitations
- 2021Precious Metal Distributions Between Copper Matte and Slag at High PSO2 in WEEE Reprocessingcitations
- 2020Recovery of Precious Metals (Au, Ag, Pt, and Pd) from Urban Mining Through Copper Smeltingcitations
- 2019Sulfation Roasting Mechanism for Spent Lithium-Ion Battery Metal Oxides Under SO2-O2-Ar Atmospherecitations
- 2016Influence of gas atmospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychography
- 2016Influence of gas atmospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychographycitations
Places of action
Organizations | Location | People |
---|
article
Amorphous carbon modulated-quantum dots NiO for efficient oxygen evolution in anion exchange membrane water electrolyzer
Abstract
| openaire: EC/H2020/892856/EU//HydrogenLung | openaire: EC/H2020/952068/EU//LESGO ; Developing efficient electrocatalysts of elements that are abundant on earth crust is crucial for green hydrogen generation technologies. In particular, the oxygen evolution reaction (OER) under alkaline plays a key role in anion exchange membrane (AEM) electrolyzer to produce green hydrogen but suffers from low kinetic. Herein, nickel oxide quantum dots with highly uniform size distribution on ultrathin amorphous carbon nanosheets (NiO dots/a-carbon) were successfully prepared by a one-step method. Introducing NiO quantum dots onto amorphous carbon modifies the local coordination environment of Ni promoting it into a higher valence state. Benefitting from the promoted Niδ+ (2<δ<3) and the strong connection between Ni and amorphous carbon though Ni-O-C and Ni-C bonds, NiO dots/a-carbon exhibits excellent activity and stability towards OER in 0.1 M KOH using the rotating disk electrode. Moreover, a challenging current density of 500 mA cm−2 is achieved at 1.7 V with a lab-scale AEM electrolyzer. ; Peer reviewed