Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kosinov, Nikolay A.

  • Google
  • 2
  • 11
  • 77

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Role of strontium cations in ZSM-5 zeolite in the methanol-to-hydrocarbons reaction5citations
  • 2018Temperature-programmed plasma surface reaction72citations

Places of action

Chart of shared publication
Mayoral, Ã.
1 / 1 shared
Heinrichs, Jason M. J. J.
1 / 4 shared
Evtushkova, Angelina
1 / 1 shared
Drozhzhin, Victor
1 / 1 shared
Jestl, Valentin
1 / 1 shared
Mezari, Brahim
1 / 3 shared
Liutkova, Anna
1 / 1 shared
Hensen, Emiel, J. M.
2 / 11 shared
Heesch, E. J. M. Van
1 / 1 shared
Parastaev, Alexander
1 / 2 shared
Hoeben, W. F. L. M.
1 / 1 shared
Chart of publication period
2023
2018

Co-Authors (by relevance)

  • Mayoral, Ã.
  • Heinrichs, Jason M. J. J.
  • Evtushkova, Angelina
  • Drozhzhin, Victor
  • Jestl, Valentin
  • Mezari, Brahim
  • Liutkova, Anna
  • Hensen, Emiel, J. M.
  • Heesch, E. J. M. Van
  • Parastaev, Alexander
  • Hoeben, W. F. L. M.
OrganizationsLocationPeople

article

Temperature-programmed plasma surface reaction

  • Heesch, E. J. M. Van
  • Kosinov, Nikolay A.
  • Hensen, Emiel, J. M.
  • Parastaev, Alexander
  • Hoeben, W. F. L. M.
Abstract

<p>Plasma-enhanced heterogeneous catalysis offers a promising alternative to thermal catalysis due to the synergy between the plasma and the solid catalyst. However, there is only a limited mechanistic insight about the interactions of highly energetic electrons and excited molecules with heterogeneous catalysts in plasmas. Accurate performance comparison in a plasma-catalytic setting is complicated because of the intricate nature of the plasma-catalyst system: simultaneous reactions occurring in the gas-phase and at the catalytic surface; the dependence of the discharge on dielectric properties of the packed catalyst bed; and the dependence of permittivity and polarization of the catalyst on plasma parameters. Here, we present a method of temperature-programmed plasma surface reaction (TPPSR) that allows decoupling gas-phase processes from the surface plasma-induced reactions. Using this method we reveal the main reasons of apparent synergy between plasma and heterogeneous catalyst for the case of carbon dioxide hydrogenation. Experiments with isotopically labelled CO<sub>2</sub> and temperature-programmed plasma reaction experiments in flow of CO<sub>2</sub>/H<sub>2</sub> prove a substantial role of gas-phase dissociation/hydrogenation for the observed catalyst activity and selectivity. The product distribution and reaction pathways do not significantly depend on the discharge parameters. Taking into account overheating of the catalytic bed for comparison of catalytic activity with and without plasma, it was concluded that energy dissipation also plays an important role. The observed plasma enhancement is in part due to the acceleration of electron-induced surface reactions.</p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • phase
  • experiment