People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baert, Kitty
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Early stages of liquid-metal corrosion on pre-oxidized surfaces of austenitic stainless steel 316L exposed to static Pb-Bi eutectic at 400 °C
- 2023DBD plasma-assisted coating of metal alkoxides on sulfur powder for Li–S batteriescitations
- 2023Identification of carbon‐containing phases in electrodeposited hard Fe–C coatings with intentionally codeposited carbon
- 2023Identification of carbon-containing phases in electrodeposited hard Fe–C coatings with intentionally codeposited carbon
- 2022Use of nanoscale carbon layers on Ag-based gas diffusion electrodes to promote CO productioncitations
- 2022Unravelling the chemisorption mechanism of epoxy-amine coatings on Zr-based converted galvanized steel by combined static XPS/ToF-SIMS approachcitations
- 2022Anti-infective DNase I coatings on polydopamine functionalized titanium surfaces by alternating current electrophoretic depositioncitations
- 2022Albumin Protein Adsorption on CoCrMo Implant Alloycitations
- 2022Influence of thermal oxide layers on the hydrogen transport through the surface of SAE 1010 steelcitations
- 2022Influence of Thermal Oxide Layers on the Hydrogen Transport through the Surface of SAE 1010 Steelcitations
- 2022Revisiting the surface characterization of plasma-modified polymerscitations
- 2021Role of phosphate, calcium species and hydrogen peroxide on albumin protein adsorption on surface oxide of Ti6Al4V alloycitations
- 2021The mechanism of thermal oxide film formation on low Cr martensitic stainless steel and its behavior in fluoride-based pickling solution in conversion treatmentcitations
- 2021Photodeposited IrO2 on TiO2 support as a catalyst for oxygen evolution reactioncitations
- 2021A combined XPS/ToF-SIMS approach for the 3D compositional characterization of Zr-based conversion of galvanized steelcitations
- 2019Molybdate-phosphate conversion coatings to protect steel in a simulated concrete pore solutioncitations
- 2018Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metalscitations
- 2018Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metalscitations
- 2018Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H2 fuel cellcitations
- 2018Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H-2 fuel cell:A combined electrochemical and density functional theory studycitations
- 2017Development of an Electrochemical Procedure for Monitoring Hydrogen Sorption/Desorption in Steelcitations
- 2015XPS and mu-Raman study of nanosecond-laser processing of poly(dimethylsiloxane) (PDMS)citations
- 2015fs- and ns-laser processing of polydimethylsiloxane (PDMS) elastomer: Comparative studycitations
Places of action
Organizations | Location | People |
---|
article
Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metals
Abstract
Non-noble metals (Fe, Co or Cu) supported on N-doped carbons were investigated for the ï¬rst time as electrocatalysts for the reduction of nitrobenzene to aniline in a half-cell setup. The electrocatalysts were prepared by pyrolysis of composites of activated carbon (AC) and polyaniline (PANI) with incorporated metal sites. The electrocatalyst performance was strongly influenced by the nature of the metal and by the synthesis method. For the latter,a different optimum was identiï¬ed for each metal. The Cu-based electrocatalyst synthesised with a low amount of PANI and Cu relative to AC, was identiï¬ed as the best electrocatalyst based on its onset potential, kinetic current density and selectivity to aniline. Most importantly, unprecedented selectivity to aniline was obtained(82%,as determined by chronoamperometry) with this electrocatalyst in a half-cell setup.This makes it a promising candidate for the electrochemical cogeneration of the industrially valuable aniline and electricity in a proton-exchange membrane fuel cell.