People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Deparis, Olivier
University of Namur
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Unsupervised topological analysis of polarized light microscopy
- 2023Enhanced quantitative birefringence imaging supported by unsupervised topological analysis of polarized light microscopy
- 2023Secondary ion mass spectrometry, a powerful tool for revealing ink formulations and animal skins in medieval manuscriptscitations
- 2020UV scattering by pores in avian eggshellscitations
- 2020Scattering of ultraviolet light by avian eggshellscitations
- 2019Growth dynamics and light scattering of gold nanoparticles in situ synthesized at high concentration in thin polymer filmscitations
- 2019Gold nanoparticles growing in a polymer matrix : what can we learn from imaging ellipsometry ?
- 2018Scattering analysis, imaging ellipsometry and reflectivity of gold nanoparticles growing in a polymer matrix
- 2018Reflectivity, imaging ellipsometry and scattering analysis of gold nanoparticles growing in a polymer matrix
- 2016ZnO quantum dots decorated 3DOM TiO 2 nanocomposites:Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutantscitations
- 2016ZnO quantum dots decorated 3DOM TiO2 nanocompositescitations
- 2015Optimized absorption of solar radiations in nano-structured thin films of crystalline silicon via a genetic algorithmcitations
- 2015Linking optical properties and nanostructure of NiCrOx Cermet nanocomposite for solar thermal application
- 2012Plasmonic device using backscattering of light for enhanced gas and vapour sensingcitations
- 2011Light coupling and enhanced backscattering in layered plasmonic nanocompositescitations
- 2010Leaky-modes excitation in thermally poled nanocomposite glass and their exploitation for saturable absorption
- 2010Poling-assisted fabrication of plasmonic nanocomposite devices in glasscitations
- 2007Photon pair source based on parametric fluorescence in periodically poled twin-hole silica fibercitations
- 2007Photon pair source based on parametric fluorescence in periodically poled twin-hole silica fiber
- 2006Poling-assisted bleaching of soda-lime float glasses containing silver nanoparticles with a decreasing filling factor across the depthcitations
- 2006Refractive index engineering in glass containing spherical silver nanoparticles using dc electric field
- 2005Electric field-assisted formation of percolated silver nanolayers inside glasscitations
- 2005Evolution of poling-assisted bleaching of metal-doped nanocomposite glass with poling conditionscitations
- 2004Poling-assisted bleaching of metal-doped nanocomposite glasscitations
Places of action
Organizations | Location | People |
---|
article
ZnO quantum dots decorated 3DOM TiO2 nanocomposites
Abstract
<p>Three dimensionally ordered macroporous inverse opal TiO<sub>2</sub> nanocomposites decorated by ZnO quantum dots (ZnO QDs@3DOM TiO<sub>2</sub>) with an intimate contact were successfully synthesized using the sol-gel technique and characterized in terms of structure, porosity, chemical composition and optical properties. The photocatalytic activity of ZnO QDs@3DOM TiO<sub>2</sub> nanocomposites with different ZnO QDs amounts was evaluated in the aqueous phase of dye pollutant molecules and compared with the state-of-the-art 3DOM TiO<sub>2</sub> and P25 photocatalysts. The symbiotic effect of ZnO QDs and 3DOM photonic structure on the light absorption and further on the photocatalytic activity of the nanocomposites was observed. The sample with the highest ZnO QDs amount exhibits extraordinarily high photocatalytic activity, which is attributed to firstly, the formation of an intimate junction between the two semiconductors, hence favoring the separation of photo-introduced electron–hole pairs in ZnO-TiO<sub>2</sub> photocatalyst, and, secondly, to the quantum size effect (QSE). The QSE results in an increase in the width of the forbidden electronic band, which increases the energy of electrons (holes) in the conduction (valence) and particularly leads to the displacement of the conduction band potentials of ZnO to more negative energy values compared to TiO<sub>2</sub>. Thanks to the heterojuction formed between ZnO QDs and 3DOM TiO<sub>2</sub>, the energy difference between conduction bands of both semiconductors acts as a driving force for rapid electron/hole transfer between the coupled materials. Due to the extremely short diffusion time, the lifetime of photogenerated charge carriers is extended and the effectiveness of reduction and oxidation process is increased with faster reaction kinetics. Increasing the amount of ZnO QDs can boost the photocatalytic activity. On the other hand, 3DOM photonic structure of TiO<sub>2</sub> with its open meso-macroporosity can facilite the diffusion of dye molecules and light propagation. This first successful example of symbiose of a series of physical effects can open a new window for solar energy conversion by the synergitic association of QSEs, photonic effect and other effects such as plasmonic effects, in one solid material to develop highly efficient solar light havesting system to enhance solar energy conversion effeciency for photocatalysis and photovoltaics.</p>