People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nørskov, Jens Kehlet
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2023Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidationcitations
- 2022Reversible Atomization and Nano-Clustering of Pt as a Strategy for Designing Ultra-Low-Metal-Loading Catalystscitations
- 2020Subsurface Nitrogen Dissociation Kinetics in Lithium Metal from Metadynamicscitations
- 2020Nitride or Oxynitride? Elucidating the Composition–Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reactioncitations
- 2019Electro-Oxidation of Methane on Platinum under Ambient Conditionscitations
- 2019An electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfacescitations
- 2019Efficient Pourbaix diagrams of many-element compoundscitations
- 2017Machine-learning methods enable exhaustive searches for active Bimetallic facets and reveal active site motifs for CO2 reductioncitations
- 2017Rh-MnO Interface Sites Formed by Atomic Layer Deposition Promote Syngas Conversion to Higher Oxygenatescitations
- 2017Mechanistic insights into heterogeneous methane activationcitations
- 2016Automated Discovery and Construction of Surface Phase Diagrams Using Machine Learningcitations
- 2015Surface Tension Effects on the Reactivity of Metal Nanoparticlescitations
- 2014Hydrogen adsorption on bimetallic PdAu(111) surface alloyscitations
- 2014Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanolcitations
- 2014Nanoscale limitations in metal oxide electrocatalysts for oxygen evolutioncitations
- 2013First Principles Investigation of Zinc-anode Dissolution in Zinc-air Batteriescitations
- 2013Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of watercitations
- 2013Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathodecitations
- 2013Density functional theory studies of transition metal nanoparticles in catalysis
- 2012CO hydrogenation to methanol on Cu–Ni catalystscitations
- 2012Universality in Oxygen Reduction Electrocatalysis on Metal Surfacescitations
- 2011Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteriescitations
- 2011Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfacescitations
- 2010Ammonia dynamics in magnesium ammine from DFT and neutron scatteringcitations
- 2010Ammonia dynamics in magnesium ammine from DFT and neutron scatteringcitations
- 2009Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reactioncitations
- 2009A CATALYST, A PROCESS FOR SELECTIVE HYDROGENATION OF ACETYLENE TO ETHYLENE AND A METHOD FOR THE MANUFACTURE OF THE CATALYST
- 2008Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylenecitations
- 2007Discovery of technical methanation catalysts based on computational screeningcitations
- 2007Discovery of technical methanation catalysts based on computational screeningcitations
- 2007CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimizationcitations
- 2003The stability of the hydroxylated (0001) surface of alpha-Al2O3citations
Places of action
Organizations | Location | People |
---|
article
CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization
Abstract
DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. Here, we report a more detailed catalytic study aimed at optimizing the catalyst performance. For this purpose, two series of mono and bimetallic Ni-Fe catalysts supported on MgAl2O4 and Al2O3, respectively, were prepared. All catalysts were tested in the CO methanation reaction in the temperature interval 200-300 degrees C, and characterized using elemental analysis, N-2 physisorption measurements, XRD and TEM. Optimization of the catalyst performance was made by varying the Ni:Fe ratio, the total metal loading and the support material. For both support materials, the bimetallic catalysts with compositions 25Fe75Ni and 50Fe50Ni showed significantly better activity and in some cases also a higher selectivity to methane compared with the traditional monometallic Ni and Fe catalysts. A catalyst with composition 25Fe75Ni was found to be the most active in CO hydrogenation for the MgAl2O4 support at low metal loadings. At high metal concentrations, the maximum for the methanation activity was found for catalysts with composition 50Ni50Fe both on the MgAl2O4 and Al2O3 supports. This difference can be attributed to a higher reducibility of the constituting metals with increasing metal concentration. The maximum of the catalytic activity and the highest selectivity to methane were observed for the sample with 20 wt% total metal loading. It appears that it is possible to increase substantially the efficiency of Ni-based methanation catalyst by alloying with Fe. (c) 2007 Elsevier B.V. All rights reserved.