Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ménigot, Sébastien

  • Google
  • 3
  • 3
  • 17

École Supérieure d'Électronique de l'Ouest

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019An overview of nearly a half century of microembolic signal processing techniquescitations
  • 2019Optimal pump excitation frequency for improvement of damage detection by nonlinear vibro acoustic modulation method in a multiple scattering sample17citations
  • 2013Automatic Optimal Command for the Linearization of the CMUT Outputcitations

Places of action

Chart of shared publication
Certon, Dominique
1 / 8 shared
Girault, Jean Marc
1 / 1 shared
Gross, Dominique
1 / 2 shared
Chart of publication period
2019
2013

Co-Authors (by relevance)

  • Certon, Dominique
  • Girault, Jean Marc
  • Gross, Dominique
OrganizationsLocationPeople

article

Optimal pump excitation frequency for improvement of damage detection by nonlinear vibro acoustic modulation method in a multiple scattering sample

  • Ménigot, Sébastien
Abstract

We present a method to systematically optimize nonlinear damage detection in multiple scattering media by the nonlinear Vibro-Acoustic Modulation (VAM) technique. The latter consists here of exciting a medium simultaneously with a high frequency ultrasonic sinusoidal burst and with a low frequency continuous sinusoidal wave. Modulation of the high frequency (probe) by the low frequency (pump) is made possible by the presence of nonlinear scatterers, i.e. cracks, defects. A signal processing technique consisting of a closed loop system drives the automatic adaptation of the pumping frequency, yielding to the optimization of the nonlinear modulation (NM) of the output probing coda signal without a priori information on the medium and the scatterers. The correlation coefficient between a reference output probe signal without the pumping wave and an output modulated probe signal with a pumping wave was considered as our cost function. A multiple scattering solid beam where nonlinear scatterers can be controllably added or removed is designed and tested. The first step of this study is an empirical search of the correlation coefficient dependency on the pumping frequency to verify the performances of the proposed method. Then the implemented optimization algorithm based on genetic algorithm (GA) is used to find automatically the optimal pumping frequency. The obtained optimization results show a good agreement with the empirical study. Moreover, the genetic algorithm allowed to find the optimal pump frequency adapted to each configuration of nonlinear scatterers. This relatively fast search of the optimal nonlinear response could be extended to nonlinear scatterer imaging applications using the information on the resonant modes spatial shapes together with the associated optimal response.

Topics
  • impedance spectroscopy
  • crack
  • ultrasonic