Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lehti, Satu

  • Google
  • 1
  • 5
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Spatial Distributions of Lipids in Atherosclerosis of Human Coronary Arteries Studied by Time-of-Flight Secondary Ion Mass Spectrometry25citations

Places of action

Chart of shared publication
Kakela, Reijo
1 / 1 shared
Mäyränpää, Mikko
1 / 1 shared
Kovanen, Petri T.
1 / 1 shared
Sjovall, Peter
1 / 5 shared
Öörni, Katariina
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Kakela, Reijo
  • Mäyränpää, Mikko
  • Kovanen, Petri T.
  • Sjovall, Peter
  • Öörni, Katariina
OrganizationsLocationPeople

article

Spatial Distributions of Lipids in Atherosclerosis of Human Coronary Arteries Studied by Time-of-Flight Secondary Ion Mass Spectrometry

  • Lehti, Satu
  • Kakela, Reijo
  • Mäyränpää, Mikko
  • Kovanen, Petri T.
  • Sjovall, Peter
  • Öörni, Katariina
Abstract

<p>The accurate spatial distribution of various lipid species during atherogenesis has remained unexplored. Herein, we used time-of-flight secondary ion mass spectrometry (TOF-SIMS) to analyze the lipid distribution in human coronary artery cryosections. The images from the TOF-SIMS allowed visualization of ions derived from individual species of cholesterol esters, phospholipids, and triacylglycerols in the context of lesion characteristics and severity. In addition, cholesterol-containing crystal-like structures were seen in high-resolution images of advanced Lesions. The ratio of cholesterol fragment ions (m/z 385:m/z 369) was found to differentiate unesterified cholesterol from cholesterol esters. This ratio changed during atherogenesis and in different areas of the Lesions, reflecting differences in the accumulation of the two forms of cholesterol. Thus, atheromas were characterized by accumulation of cholesterol esters with apolipoprotein B near the intima-media border, whereas in the complicated Lesions, unestetified cholesterol dominated in neovessel-containing areas enriched in glycophorin A. Interestingly, triacylglycerols were found in areas surrounding neovessels and Lacking either form of cholesterol. The Lipid composition of the tunica media reflected the alterations observed in the intimal lipids, yet being more subtle. The detailed molecular information obtained by TOF-SIMS revealed unanticipated differences in the type and composition of the accumulating Lipids in different stages of atherogenesis, notably the spatial segregation of cholesterol and triglycerides in the advancing lesions.</p>

Topics
  • ester
  • spectrometry
  • selective ion monitoring
  • secondary ion mass spectrometry