Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Slater, James J. R. Huddleston

  • Google
  • 1
  • 3
  • 166

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes166citations

Places of action

Chart of shared publication
Fourie, Zacharias
1 / 1 shared
Damstra, Janalt
1 / 1 shared
Ren, Yijin
1 / 5 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Fourie, Zacharias
  • Damstra, Janalt
  • Ren, Yijin
OrganizationsLocationPeople

article

Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes

  • Slater, James J. R. Huddleston
  • Fourie, Zacharias
  • Damstra, Janalt
  • Ren, Yijin
Abstract

<p>INTRODUCTION: The aims of this study were to determine the linear accuracy of 3-dimensional surface models derived from a commercially available cone-beam computed tomography (CBCT) dental imaging system and volumetric rendering software and to investigate the influence of voxel resolution on the linear accuracy of CBCT surface models.</p><p>METHODS: Glass sphere markers were fixed on 10 dry mandibles. The mandibles were scanned with 0.40 and 0.25 voxel size resolutions in 3 sessions. Anatomic truth was established with 6 direct digital caliper measurements. The surface models were rendered by a volumetric rendering program, and the CBCT measurements were established as the mean of the 3 measurements.</p><p>RESULTS: The intraclass correlation coefficients between the physical measurements and the measurements of the CBCT images of 0.40 and 0.25 voxels were all more than 0.99. All CBCT measurements were accurate. There was no difference between the accuracy of the measurements between the 0.40 and 0.25 voxel size groups. The smallest detectable differences of the CBCT measurements were minimal, confirming the accuracy of the CBCT measurement procedure.</p><p>CONCLUSIONS: The measurements on 3-dimensional surface models of 0.25 and 0.40 voxel size data sets made with the 3D eXam CBCT scanner (KaVo Dental GmbH, Bismarckring, Germany) and SimPlant Ortho Pro software (version 2.00, Materialise Dental, Leuven, Belgium) are accurate compared with direct caliper measurements. An increased voxel resolution did not result in greater accuracy of the surface model measurments.</p>

Topics
  • surface
  • tomography
  • glass
  • glass