People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aremu, Adedeji
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Mechanical characterisation and crashworthiness performance of additively manufactured polymer-based honeycomb structures under in-plane quasi-static loadingcitations
- 2023Finite element model of fiber volume effect on the mechanical performance of additively manufactured carbon fiber reinforced plastic compositescitations
- 2022Material design factors in the additive manufacturing of Carbon Fiber Reinforced Plastic Compositescitations
- 2019Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturingcitations
- 2018Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturingcitations
- 2017Compressive failure modes and energy absorption in additively manufactured double gyroid latticescitations
- 2017Non-linear Contact Analysis of Self-Supporting Lattice
- 2017Insights into the mechanical properties of several triplyperiodic minimal surface lattice structures made by polymeradditive manufacturingcitations
- 2016A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser meltingcitations
- 2016Effects of Net and Solid Skins on Self-Supporting Lattice Structures
- 2014The BCC unit cell for latticed SLM parts; mechanical properties as a function of cell size
- 2014A Comparative Finite Element Study of Cubic Unit Cells for Selective Laser Melting
Places of action
Organizations | Location | People |
---|
article
Material design factors in the additive manufacturing of Carbon Fiber Reinforced Plastic Composites
Abstract
Materials design advancements are now paramount to further the course of additive manufacturing (AM) of carbon-fiber-reinforced plastic (CFRP) composites. This is due to the increased prospect of such composites in a wide range of applications, ranging from space to automotive subjected to stringent mechanical performance requirements. A synergy of the high strength-to-weight ratio of the CFRP composites coupled with design freedoms inherent in AM techniques offers several interesting opportunities to customize and increase access to mechanical parts. However, several challenges are currently preventing the AM fabrication of the composites from realizing satisfactory mechanical properties compared to some of the traditional methods such as autoclave molding, extrusion molding, compression molding, etc. The challenges can be improved with a better understanding and appropriation of materials design factors that define the controllable material features which could be suitably varied to obtain desired mechanical performances. This paper reviews the literature on the material factors that influence the mechanical performance of parts composed of short-fiber CFRP composites fabricated through the AM technique. Thermoplastic matrix compositions, chain arrangements, and structural morphology effects are discussed in relation to the ease of processing and the final mechanical performance of fabricated composites. Operating environmental effects on mechanical performance were reviewed and also works of literature on the current state of development in the simulation modeling of material factors in the AM fabrication of CFRP composites were discussed.