People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abeykoon, Chamil
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (43/43 displayed)
- 2024Synthesis, properties, applications, 3D printing and machine learning of graphene quantum dots in polymer nanocompositescitations
- 2024A data-driven model on the thermal transfer mechanism of composite phase change materialscitations
- 2024A data-driven model on the thermal transfer mechanism of composite phase change materialscitations
- 2024Adaptive Control of Melt Pressure in Polymer Extrusion Processes Using Extremum-Seeking Control
- 2024Investigation of the effect of reprocessing on thermal and mechanical properties of polymers and polymer nanocompositescitations
- 2024Mechanical properties of LDPE and PS polymer matrix composites reinforced with GNP and CF — A critical reviewcitations
- 2024Adaptive Neuro-Fuzzy Controller for Real-Time Melt Pressure Control in Polymer Extrusion Processes
- 2024Infusion Simulation of Graphene-Enhanced Resin in LCM for Thermal and Chemo-Rheological Analysiscitations
- 2024MXene-Embedded Porous Carbon-Based Cu2O Nanocomposites for Non-Enzymatic Glucose Sensorscitations
- 2024Stimuli-Responsive Codelivery System-Embedded Polymeric Nanofibers with Synergistic Effects of Growth Factors and Low-Intensity Pulsed Ultrasound to Enhance Osteogenesis Propertiescitations
- 2024MXene-Embedded Porous Carbon-Based Cu 2 O Nanocomposites for Non-Enzymatic Glucose Sensorscitations
- 2024Effects of Latex Type and Processed-Mica Waste Loading on the Structural and Thermo-Physical Properties of Natural Rubber Latex Foam Compositescitations
- 2024Investigation of the effect of materials and processing conditions in twin-screw extrusioncitations
- 2023A Numerical Thermo-Chemo-Flow Analysis of Thermoset Resin Impregnation in LCM Processescitations
- 2023Investigation of the effect of the degree of hollowness and internal cavity structure on the mechanical properties of 3D-printed materialscitations
- 2023Investigation of the effect of the degree of hollowness and internal cavity structure on the mechanical properties of 3D-printed materialscitations
- 2023Mechanical and thermal properties of graphene nanoplatelets-reinforced recycled polycarbonate compositescitations
- 2023Melt Pressure Prediction in Polymer Extrusion Processes with Deep Learningcitations
- 2023Melt Pressure Prediction in Polymer Extrusion Processes with Deep Learningcitations
- 2022Numerical Investigation of Multi-scale Characteristics of Single and Multi-layered Woven Structurescitations
- 2022Mechanical and thermal properties of graphene nanoplatelets-reinforced recycled polycarbonate compositescitations
- 2022Composites for Electric Vehicles and Automotive Sector: A Reviewcitations
- 2022Sensing technologies for process monitoring in polymer extrusion: A comprehensive review on past, present and future aspectscitations
- 2022The effects of extrusion parameters and blend composition on the mechanical, rheological and thermal properties of LDPE/PS/PMMA ternary polymer blendscitations
- 2022A review on optical properties and application of transparent ceramicscitations
- 2022Numerical Simulation of Two-Phase Flow in Liquid Composite Moulding Using VOF-Based Implicit Time-Stepping Schemecitations
- 2021Remanufacturing using End-of-Life Vehicles and Electrical and Electronic Equipment Polymer Recyclates - A Paradigm for Assessing the Value Propositioncitations
- 2021Energy efficiency in extrusion-related polymer processing: a review of state of the art and potential efficiency improvementscitations
- 2021Investigation of the effects of fillers in polymer processingcitations
- 2021Comparison of Mechanical Properties of Carbon Fibre and Kaolin Reinforced Polypropylene Compositescitations
- 2020The Effect of Materials’ Rheology on Process Energy Consumption and Melt Thermal Quality in Polymer Extrusioncitations
- 2020Optimization of Fused Deposition Modeling Parameters for Improved PLA and ABS 3D Printed Structurescitations
- 2019Investigation of Thermal Stability of Non-Newtonian Melt Flowscitations
- 2018Design and Applications of Soft Sensors in Polymer Processing: A Reviewcitations
- 2014Investigation of the temperature homogeneity of die melt flows in polymer extrusioncitations
- 2014A Novel Model-Based Controller for Polymer Extrusion
- 2014Process efficiency in polymer extrusion: Correlation between the energy demand and melt thermal stabilitycitations
- 2014Process Efficiency in Polymer Extrusion: Correlations between the Energy Demand and Melt Thermal Stabilitycitations
- 2014A Novel Soft Sensor for Real-Time Monitoring of the Die Melt Temperature Profile in Polymer Extrusion
- 2014Investigation of the process energy demand in polymer extrusion: a brief review and an experimental studycitations
- 2012Monitoring and Modelling of the Effects of Process Settings and Screw Geometry on Melt Pressure Generation in Polymer Extrusion
- 2012A review and evaluation of melt temperature sensors for polymer extrusioncitations
- 2011The inferential monitoring of screw load torque to predict process fluctuations in polymer extrusioncitations
Places of action
Organizations | Location | People |
---|
article
The effects of extrusion parameters and blend composition on the mechanical, rheological and thermal properties of LDPE/PS/PMMA ternary polymer blends
Abstract
Polymer blending is one of the popular methods for producing tailor-made materials by combining the properties of individual polymers. Binary polymer blends have quite commonly been used over the past few decades. Recently, researchers have shifted their focus towards ternary polymer blends and this study aims to investigate a ternary polymer blend system consisting of low-density polyethylene (LDPE), polystyrene (PS) and polymethyl methacrylate (PMMA). The LDPE/PS/PMMA blend was processed by melt blending using a twin-screw extruder. The effects of the extrusion process parameters (i.e., screw speed and barrel set temperatures) and the blend composition on the mechanical, rheological and thermal properties of the polymer blend and the degree of crystallinity of the LDPE matrix were studied. Three different screw speeds (i.e., 50 rpm, 100 rpm and 150 rpm), two different barrel set temperatures (i.e., 200 °C and 220 °C), and two different component mass ratios (i.e., 70/10/20 and 70/20/10) were studied. The results showed that the tensile properties of the LDPE/PS/PMMA blend were significantly influenced by its microstructure. Yield strength and Young's modulus decreased at first and then increased with increasing screw speed. The blend processed at a barrel set temperature of 220 °C was found to have better tensile properties than the blend processed at 200 °C. Furthermore, the blend with a PS content of 10 wt% possessed better tensile properties than the blend with a PS content of 20 wt%. Regardless of the blend compositions and the process settings, the LDPE/PS/PMMA blends reported better mechanical properties than those of pure LDPE with a Young's Modulus of 240 MPa and a yield stress of 10.47 MPa. The rheology of the blend was also significantly affected by the process parameters and the blend composition. However, different process parameters and mass ratios did not indicate a significant influence on the melting temperature (around 109.5 °C) and the degradation initiation temperature (around 252.3 °C) of the LDPE/PS/PMMA blend, but both the melting temperature and the degradation initiation temperature of the ternary blend were found to be slightly lower than those of pure LDPE. The degree of crystallinity of the LDPE matrix was also affected by both the screw speed and the barrel set temperature. The results revealed that, better mechanical properties can be achieved by blending PS and PMMA with LDPE without significantly affecting the thermal properties compared to those of pure LDPE.