Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sheffield, Justin

  • Google
  • 1
  • 5
  • 51

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Assimilation of soil moisture and canopy cover data improves maize simulation using an under-calibrated crop model51citations

Places of action

Chart of shared publication
Lu, Yang
1 / 9 shared
Onema, Jean-Marie Kileshye
1 / 1 shared
Mccabe, Matthew F.
1 / 1 shared
Chibarabada, Tendai
1 / 1 shared
Ziliani, Matteo G.
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Lu, Yang
  • Onema, Jean-Marie Kileshye
  • Mccabe, Matthew F.
  • Chibarabada, Tendai
  • Ziliani, Matteo G.
OrganizationsLocationPeople

article

Assimilation of soil moisture and canopy cover data improves maize simulation using an under-calibrated crop model

  • Lu, Yang
  • Sheffield, Justin
  • Onema, Jean-Marie Kileshye
  • Mccabe, Matthew F.
  • Chibarabada, Tendai
  • Ziliani, Matteo G.
Abstract

Parameter calibration is normally required prior to crop model simulation, which can be a time-consuming and data-intensive task. Meanwhile, the growth stages of different hybrids/cultivars of the same crop often show some similarities, which implies that phenological parameters calibrated for one hybrid/cultivar may be useful for the simulation of another. In this study, a data assimilation framework is proposed to reduce the requirement for parameter calibration for maize simulation using AquaCrop. The phenological parameters were uniformly scaled from previous research performed in a different location for a different maize hybrid, and other parameters were taken from default settings in the model documentation. To constrain simulation uncertainties, soil moisture and canopy cover observations were assimilated both separately and jointly in order to update model states. The methodology was tested across a rain-fed field in Nebraska for 6 growing seasons. The results suggested that the under-calibrated model with uniformly scaled phenological parameters captured the temporal dynamics of crop growth, but may lead to large estimation bias. Data assimilation effectively improved model performance, and the joint assimilation outperformed single-variable assimilation. When soil moisture and canopy cover were jointly assimilated, the overall yield estimates (RMSE = 1.24 t/ha, nRMSE = 11.48%, R2 = 0.695) were improved over the no-assimilation case (RMSE = 2.01 t/ha, nRMSE = 18.61%, R2 = 0.338). Sensitivity analyses suggested that the improvement was still evident with temporally sparse soil moisture observations and a small ensemble size. Further testing using observations within 90 days after planting demonstrated that the method was able to predict yield around 3 months before harvest (RMSE = 1.7 t/ha, nRMSE = 15.74%). This study indicated that maize yield can be estimated and predicted accurately by monitoring the soil moisture and canopy status, which has potential for regional applications using remote sensing data.

Topics
  • impedance spectroscopy
  • simulation