People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Akbar, Arslan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024A coupled 3D thermo-mechanical peridynamic model for cracking analysis of homogeneous and heterogeneous materialscitations
- 2023Potential of Pyrogenic Nanosilica to Enhance the Service Life of Concretecitations
- 2023Performance of silica fume slurry treated recycled aggregate concrete reinforced with carbon fiberscitations
- 2022Future developments and challenges of nano-tailored cementitious composites
- 2022Influence of Elevated Temperatures on the Mechanical Performance of Sustainable-Fiber-Reinforced Recycled Aggregate Concretecitations
- 2021Multicriteria performance evaluation of fiber-reinforced cement compositescitations
- 2021Geopolymer concrete as sustainable materialcitations
- 2021Predictive modeling for sustainable high-performance concrete from industrial wastescitations
- 2021Exploring mechanical performance of hybrid MWCNT and GNMP reinforced cementitious compositescitations
- 2021Microstructural changes and mechanical performance of cement composites reinforced with recycled carbon fiberscitations
- 2021Sugarcane bagasse ash-based engineered geopolymer mortar incorporating propylene fiberscitations
- 2020Assessing recycling potential of carbon fiber reinforced plastic waste in production of eco-efficient cement-based materialscitations
- 2020A comparative study on performance evaluation of hybrid GNPs/CNTs in conventional and self-compacting mortarcitations
- 2020New Prediction Model for the Ultimate Axial Capacity of Concrete-Filled Steel Tubescitations
- 2020Influence of elevated temperature on the microstructure and mechanical performance of cement composites reinforced with recycled carbon fiberscitations
Places of action
Organizations | Location | People |
---|
article
A comparative study on performance evaluation of hybrid GNPs/CNTs in conventional and self-compacting mortar
Abstract
In this paper performance of graphite nano platelets and carbon nanotubes was investigated in both conventional as well as self-compacting mortar. Workability, linear-shrinkage, rheological properties, flexural and compressive strength, air content and water absorption tests were conducted. Results reveal that by addition of nano media in cement matrix workability, shrinkage, air content, and water absorption adamantly reduces as compared to control mixtures. On the other hand yield stress, plastic viscosity, compressive and flexural strength enhances significantly. The shrinkage response of SCM-3 and CCM-3 depicts reduction of 66% and 61% respectively. Furthermore, yield stress and plastic viscosity increase 53% and 12% respectively. By addition of nano media deviation in crack propagation, more nucleation sites, capturing the micro voids, filling the pores and dense packing of the hydrated products were found. Increase in compressive strength and flexural strength was observed. Hence hybrid nano media can be intruded as a potential candidate in cement matrix for enhancing the structural properties.