People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Luckabauer, Martin
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2025Simulating induction heating of fabric based thermoplastic composites using measured electrical conductivitiescitations
- 2024Post aging heat treatment effect on AA6060 produced by Friction Screw Extrusion Additive Manufacturing
- 2024The effect of the laser beam intensity profile in laser-based directed energy depositioncitations
- 2023Solid-State Additive Manufacturing of AA6060 Employing Friction Screw Extrusion Additive Manufacturingcitations
- 2023Melting-Free Metal Production: Solid-State Additive Manufacturing of an Al-Mg-Si Alloy Using FSEAM
- 2023The Influence of the Deposition Speed during Friction Screw Extrusion Additive Manufacturing of AA6060
- 2023Friction screw extrusion additive manufacturing of an Al-Mg-Si alloycitations
- 2023Determination of the anisotropic electrical conductivity of carbon fabric reinforced composites by the six-probe methodcitations
- 2023A Feasibility Study on Friction Screw Extrusion Additive Manufacturing of AA6060citations
- 2023Laser intensity profile as a means to steer microstructure of deposited tracks in Directed Energy Depositioncitations
- 2023Thermo-fluid modeling of influence of attenuated laser beam intensity profile on melt pool behavior in laser-assisted powder-based direct energy deposition
- 2022Thermo-fluidic behavior to solidification microstructure texture evolution during laser-assisted powder-based direct energy deposition
- 2022A feasibility study on friction screw extrusion additive manufacturing of AA6060
- 2020Evolution of microstructure and variations in mechanical properties accompanied with diffusionless isothermal ω transformation in β -titanium alloyscitations
- 2019Decreasing activation energy of fast relaxation processes in a metallic glass during agingcitations
- 2017In situ real-time monitoring of aging processes in an aluminum alloy by high-precision dilatometrycitations
- 2015Thermophysical properties of manganin (Cu86Mn12Ni2) in the solid and liquid statecitations
- 2014Specific volume study of a bulk metallic glass far below its calorimetrically determined glass transition temperaturecitations
- 2013Self- and solute diffusion, interdiffusion and thermal vacancies in the system iron-aluminiumcitations
Places of action
Organizations | Location | People |
---|
article
The effect of the laser beam intensity profile in laser-based directed energy deposition
Abstract
<p>Modeling the thermal and fluid flow fields in laser-based directed energy deposition (DED-LB) is crucial for understanding process behavior and ensuring part quality. However, existing models often fail to accurately predict these fields due to simplifying assumptions, particularly regarding powder particle-induced attenuation in laser power and energy density distribution, and the variable material properties and process parameters. The present work introduces a high-fidelity multi-phase thermal-fluid model driven by a combination of the discrete element method (DEM) and the finite volume method (FVM). Incorporating an enhanced attenuation model for laser energy enables a more precise approximation of powder particle-induced attenuation effects in the laser power and energy density distribution. The study focuses on the influence of laser beam intensity profiles during DED-LB of austenitic stainless steel (AISI 316 L), with model validation conducted through experimental measurements of deposited track dimensions for different beam shapes. The results of numerical simulations demonstrate the critical impact of powder-induced attenuation on the laser power and intensity profiles. Neglecting laser energy attenuation, a common assumption in numerical simulations of DED-LB, leads to overestimations of the absorbed energy of the laser beam, affecting thermal and fluid flow fields, and melt pool dimensions. The present study unravels the complex relationship between the attenuation coefficient (due to the powder stream) and powder stream characteristics, describing the variations of the attenuation coefficient with changes in the powder mass flow rate and powder stream incidence angle. The findings show the critical effects of laser beam shaping on melt pool behavior in DED-LB, with square beams inducing larger melt pool volumes and circular beams creating smaller but deeper melt pools. The proposed enhanced thermal-fluid modeling framework offers a robust approach for optimizing laser-based additive manufacturing across diverse materials and laser systems.</p>