People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salminen, Antti
University of Turku
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (44/44 displayed)
- 2024Tribological behavior and biocompatibility of novel Nickel-Free stainless steel manufactured via laser powder bed fusion for biomedical applicationscitations
- 2024Welding electrical connections between battery sheet metal materials and additively manufactured (AM) aluminum components: The effect of surface roughness
- 2024Flow and hardening behavior in the heat-affected zone of welded ultra-high strength steelscitations
- 2024Effect of laser focal point position on porosity and melt pool geometry in laser powder bed fusion additive manufacturingcitations
- 2024Corrosion behavior of laser powder bed fusion manufactured nickel-free stainless steels in high-temperature watercitations
- 2023Effects of powder recycling on laser-based powder bed fusion produced SS316L partscitations
- 2023Harmonizing sound and light: X-ray imaging unveils acoustic signatures of stochastic inter-regime instabilities during laser meltingcitations
- 2021Mechanical properties and microstructure of additively manufactured stainless steel with laser welded jointscitations
- 2021Recent developments in laser welding of aluminum alloys to steelcitations
- 2021Surface roughness variance on different levels of surface inclination of powder bed fused tool steel 1.2709citations
- 2020Additive Manufacturing—Past, Present, and the Futurecitations
- 2020Testing and analysis of additively manufactured stainless steel CHS in compressioncitations
- 2020Integration of Simulation Driven DfAM and LCC Analysis for Decision Making in L-PBFcitations
- 2019Effective parameters on the fatigue life of metals processed by powder bed fusion technique: A short reviewcitations
- 2019Filler Metal Mixing Behaviour of 10 mm Thick Stainless Steel Butt-Joint Welds Produced with Laser-Arc Hybrid and Laser Cold-Wire Processescitations
- 2019Study of phenomenon of fibre-laser-MIG/MAG-hybrid-weldingcitations
- 2018Correlation between pyrometer monitoring and active illuminaton imaging of laser assisted additive manufacturing of stainless steelcitations
- 2018Interaction between laser beam and paper materialscitations
- 2018Effect of process parameters to monitoring of laser assisted additive manufacturing of alumina ceramicscitations
- 2018Laser scribing of stainless steel with and without work mediacitations
- 2017Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturingcitations
- 2017Circular Economy Concept In Additive Manufacturing
- 2017Preliminary Investigation on Life Cycle Inventory of Powder Bed Fusion of Stainless Steelcitations
- 2016Controlled metal transfer from a wire by a laser-induced boiling front
- 2016Powder cloud behavior in laser cladding using scanning opticscitations
- 2016Powder cloud behaviour in laser cladding using scanning opticscitations
- 2015Preliminary comparison of properties between Ni-electroplated stainless steel parts fabricated with laser additive manufacturing and conventional machiningcitations
- 2015Overview of Sustainability Studies of CNC Machining and LAM of Stainless Steelcitations
- 2015Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturingcitations
- 2015Preliminary Investigation of Keyhole Phenomena during Single Layer Fabrication in Laser Additive Manufacturing of Stainless Steelcitations
- 2014Katsaus lisäävän valmistuksen (aka 3D-tulostus) mahdollisuuksiin ja kustannuksiin metallisten tuotteiden valmistuksessa: Case jauhepetitekniikka ; Overview to possibilities and costs of additive manufacturing (aka 3D printing) of metallic materials: Case powder bed fusion technique
- 2014Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramicscitations
- 2013Digital design and manufacturing process comparison for new custom made product family – a case study of a bathroom faucetcitations
- 2013Laser cladding using scanning optics:Effect of the powder feeding angle and gas flow on process stabilitycitations
- 2012Laser cladding with scanning optics:Effect of power adjustmentcitations
- 2012Laser cladding using scanning opticscitations
- 2012Laser cladding using scanning opticscitations
- 2010The characteristics of high power fibre laser weldingcitations
- 2010Simultaneous sub second laser welding of polymers with diffractive opticscitations
- 2008The effect of clamping force when using ultrasonic welding ridge on ultra high speed fiber laser welding of polycarbonate
- 2006Cutting of stainless steel with fiber and disk lasercitations
- 2004Quality and costs analysis of laser welded all steel sandwich panelscitations
- 2003Industrial laser welded all steel sandwich panels applications in Finland
- 2001Manufacturing procedure and costs analysis of laser welded all steel sandwich panelscitations
Places of action
Organizations | Location | People |
---|
article
Effect of laser focal point position on porosity and melt pool geometry in laser powder bed fusion additive manufacturing
Abstract
In laser powder bed fusion (PBF-LB) additive manufacturing (AM), the laser beam is the fundamental tool used to selectively melt metal powder layer-upon-layer to form a 3-dimensional part. Studies on the effect of the laser scanning parameters (power, speed, hatch distance, and scanning strategy in general) on part quality are abundant; however, far less emphasis has been given to the effect of the laser beam and how it is focused on the laser-material interaction plane. Here, we have studied the effect of laser beam focal point position on porosity and melt pool geometry in PBF-LB AM. In addition, we also study how the various energy density parameters developed for laser melting processes correlate with melt pool dimensions in a situation where the laser beam focal point position (and the beam diameter and laser intensity change at work plane caused by it), is taken into consideration. Furthermore, we assess the possibility of using co-axial, photodiode-based melt pool monitoring signals as a means to monitor the thermal emissions of the process, and how it correlates with the resulting melt pool geometry. It was found that melt pool penetration experiences a major decrease when the focal point position is shifted by more than ±1 mm (or 30% of Rayleigh length), which could be considered as a tolerance limit for acceptable focus shift in PBF-LB machines. Focus shifts larger than this were effectively captured by the photodiode signals, indicating the potential of using such photodiode-based melt pool monitoring systems for continuous monitoring of focus shift in PBF-LB AM. Finally, it was shown that all the studied energy density parameters, except volumetric energy density, were able to capture the trend in normalized melt pool dimensions when focus position is introduced as a variable. A new energy density metric by normalizing the melt pool monitoring signal intensity with the beam area was introduced and shown to correlate with the normalized melt pool dimensions.