Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thalhamer, Andreas

  • Google
  • 3
  • 8
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Dual-vat photopolymerization 3D printing of vitrimers12citations
  • 2024MetamaterialFinder1citations
  • 2022Asymmetric chiral and antichiral mechanical metamaterials with tunable Poisson's ratio18citations

Places of action

Chart of shared publication
Rossegger, Elisabeth
1 / 7 shared
Schlögl, Sandra
3 / 33 shared
Shaukat, Usman
1 / 3 shared
Fleisch, Mathias
2 / 4 shared
Pinter, Gerald
2 / 67 shared
Berer, Michael
2 / 12 shared
Fuchs, Peter Filipp
2 / 7 shared
Meier, Gerald
1 / 3 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Rossegger, Elisabeth
  • Schlögl, Sandra
  • Shaukat, Usman
  • Fleisch, Mathias
  • Pinter, Gerald
  • Berer, Michael
  • Fuchs, Peter Filipp
  • Meier, Gerald
OrganizationsLocationPeople

article

Dual-vat photopolymerization 3D printing of vitrimers

  • Thalhamer, Andreas
  • Rossegger, Elisabeth
  • Schlögl, Sandra
  • Shaukat, Usman
Abstract

Herein, the processing of multi-material vitrimers with heterogenous properties along their x-,y- and z-axis is demonstrated using dual-vat digital light processing (DLP) 3D printing. The printer is based on a conventional vat exchange set-up containing two vats and a cleaning station, which are positioned on a linearly moving platform, and are exchanged automatically during the layer-by-layer build-up of the object. Two thiol-acrylate resins are selected bearing ample -OH and ester moieties, which undergo thermo-activated transesterification in the presence of an organic phosphate as catalyst. Based on the functionality of the acrylate monomers, printing of multi-material structures with flexible (σ = 1.1 MPa, ε = 14.0%) and rigid (σ = 33.3 MPa, ε = 4.4%) domains is feasible. A good interlayer adhesion between the soft and hard domains is evidenced by uniaxial tensile tests, whilst optical microscopy is used to study the interface. Dynamic mechanical analysis further shows that the stiffness of the photopolymers varies over several orders of magnitude (E’23 °C = 209 kPa - 507 MPa). Jacobs working curves of the two different resins reveal comparable printing parameters at higher exposure doses, which do not only facilitate the printing of multiple materials between individual layers (z-heterogeneity) but also within the same layer (x,y-heterogeneity). This is confirmed by the printing of a multi-material gripper as “proof of concept” demonstrator, which contains soft inner teeth and a stiff outer core. Gripping and releasing of objects is shown by exploiting the glass transition-based shape memory properties of the stiff domains. Moreover, due to the dynamic nature of the covalent bonds, damages inserted into the gripper are intrinsically repairable due to a thermo-activated macroscopic reflow. Shape memory experiments further confirmed that the multi-material gripper fully regains its function after the thermal mending process. Thus, the results clearly show that objects with a high degree of functionality can be realized by combining multi-material 3D printing with the chemistry of vitrimers. This is of particular interest for future soft robotic applications and for mimicking biological composite structures.

Topics
  • impedance spectroscopy
  • experiment
  • glass
  • glass
  • composite
  • optical microscopy
  • resin
  • ester
  • dynamic mechanical analysis
  • vat photopolymerization