People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cole, Ivan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Inhibitory behaviour and adsorption stability of benzothiazole derivatives as corrosion inhibitors towards galvanised steelcitations
- 2023Use of sensing, digitisation, and virtual object analyses to refine quality performance and increase production rate in additive manufacturing
- 2023Inhibitory behaviour and adsorption stability of benzothiazole derivatives as corrosion inhibitors towards galvanised steelcitations
- 2023Progress and challenges in making an aerospace component with cold spray additive manufacturing
- 2023A design and optimisation framework for cold spray additive manufacturing of lightweight aerospace structural componentscitations
- 2023Microstructure and mechanical properties of heat-treated cold spray additively manufactured titanium metal matrix compositescitations
- 2023Electrochemical and Surface Characterisation of Carbon Steel Exposed to Mixed Ce and Iodide Electrolytes
- 2022In-situ monitoring of build height during powder-based laser metal depositioncitations
- 2022Predictions of in-situ melt pool geometric signatures via machine learning techniques for laser metal depositioncitations
- 2020Nondestructive quantitative characterisation of material phases in metal additive manufacturing using multi-energy synchrotron X-rays microtomographycitations
- 2018Detection of defects of additively manufactured metal parts via synchrotron X-ray microtomography
- 2016Using high throughput experimental data and in silico models to discover alternatives to toxic chromate corrosion inhibitorscitations
- 2016Modeling corrosion inhibition efficacy of small organic molecules as non-toxic chromate alternatives using comparative molecular surface analysis (CoMSA)citations
- 2015The influence of rare earth mercaptoacetate on the initiation of corrosion on AA2024-T3 Part II: The influence of intermetallic compositions within heavily attacked sitescitations
- 2015The influence of rare earth mercaptoacetate on the initiation of corrosion on AA2024-T3 Part I: Average statistics of each intermetallic compositioncitations
- 2014Towards chromate-free corrosion inhibitors: structure property models for organic alternativescitations
- 2014Microstructure characterisation and reconstruction of intermetallic particlescitations
- 2013In-situ synthesis of functional silica nanoparticles for enhancement the corrosion resistance of TBCscitations
- 2013A corrosion map of Abu Dhabicitations
- 2012The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soilscitations
- 2012FIB/SEM study of AA2024 corrosion under a seawater drop. Part IIcitations
- 2011Managing risk of SCC of Fin Fan air cooled heat exchangers
- 2011FIB/SEM study of AA2024 corrosion under a seawater drop: Part Icitations
- 2010Combining green self-healing coatings for metal protectioncitations
- 2010Multilayered coatings: tuneable protection for metalscitations
Places of action
Organizations | Location | People |
---|
article
A design and optimisation framework for cold spray additive manufacturing of lightweight aerospace structural components
Abstract
Cold spray additive manufacturing (CSAM) is a solid-state deposition process with the potential to produce near-net shape components with complex geometry at a high fabrication rate, making it an attractive alternative to more widely established additive manufacturing (AM) processes. However, CSAM is still in its early stages, requiring numerous advancements. The current literature highlights the lack of a design framework for fabricating structural components that encompasses the advantages and constraints of CSAM. This work proposes such a framework to guide product and process engineers, with its novel aspects including (i) accounting for different spray trajectories and their effect on anisotropic mechanical properties, (ii) accounting for the primary constraint for toolpath planning (maximum overhang angle ‘MOA’), and (iii) virtual development and optimisation of a real-world structural component with complex geometry. To exemplify this framework, tensile properties under two spray trajectories and MOA were determined experimentally for a common lightweight metal (titanium) supplemented with a ceramic to form a metal matrix composite with improved strength. Optimisation of the design was conducted via finite element analysis and topology optimisation. Two different topology optimisation processes were conducted, (i) minimising the strain energy of the structure and reducing the weight by 60% (best stiffness to weight ratio) and (ii) minimising the weight by targeting a maximum factor of safety (FoS) value of 1.2. The final design was fabricated via CSAM with relatively little raw material wastage and reasonably close geometric accuracy. Fabrication defects were noticed after making a demonstration component, and ways to eliminate those are discussed within the context of the design framework proposed here.