Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wysocki, Bartlomiej

  • Google
  • 4
  • 32
  • 89

Cardinal Stefan Wyszyński University in Warsaw

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023How to control the crystallization of metallic glasses during laser powder bed fusion? Towards part-specific 3D printing of in situ composites14citations
  • 2022In situ alloying of NiTi: Influence of laser powder bed fusion (LBPF) scanning strategy on chemical composition40citations
  • 2022Heat Treatment of NiTi Alloys Fabricated Using Laser Powder Bed Fusion (LPBF) from Elementally Blended Powders23citations
  • 2021Biological and Corrosion Evaluation of In Situ Alloyed NiTi Fabricated through Laser Powder Bed Fusion (LPBF)12citations

Places of action

Chart of shared publication
Choma, Tomasz
1 / 6 shared
Leonowicz, Marcin
1 / 26 shared
Li, X.
1 / 71 shared
Krawczynska, Agnieszka
3 / 7 shared
Swieszkowski, Wojciech
4 / 15 shared
Żrodowski, Cezary
1 / 2 shared
Błyskun, Piotr
1 / 11 shared
Wróblewski, Rafał
1 / 11 shared
Kulikowski, Krzysztof
1 / 18 shared
Małachowska, Aleksandra
1 / 3 shared
Moneta, Grzegorz
1 / 2 shared
Cetner, Tomasz
1 / 2 shared
Jaroszewicz, Jakub
1 / 23 shared
Dobkowska, Anna
2 / 33 shared
Ciftci, Jakub
1 / 8 shared
Yuan, L.
1 / 7 shared
Morończyk, Bartosz
1 / 12 shared
Chulist, Robert
1 / 23 shared
Żrodowski, Łukasz
1 / 12 shared
Chmielewska, Agnieszka
3 / 5 shared
Buhagiar, Joseph
2 / 10 shared
Gloc, Michał
1 / 17 shared
Michalski, Bartosz
2 / 13 shared
Adamczyk-Cieślak, Bogusława
2 / 77 shared
Kruszewski, Mirosław
1 / 16 shared
Zielińska, Aleksandra
1 / 7 shared
Kwaśniak, Piotr
1 / 5 shared
Choińska, Emilia
1 / 16 shared
Jastrzębska, Agnieszka
1 / 42 shared
Jakubczak, Michał
1 / 11 shared
Dean, David
1 / 5 shared
Kijeńska-Gawrońska, Ewa
1 / 7 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Choma, Tomasz
  • Leonowicz, Marcin
  • Li, X.
  • Krawczynska, Agnieszka
  • Swieszkowski, Wojciech
  • Żrodowski, Cezary
  • Błyskun, Piotr
  • Wróblewski, Rafał
  • Kulikowski, Krzysztof
  • Małachowska, Aleksandra
  • Moneta, Grzegorz
  • Cetner, Tomasz
  • Jaroszewicz, Jakub
  • Dobkowska, Anna
  • Ciftci, Jakub
  • Yuan, L.
  • Morończyk, Bartosz
  • Chulist, Robert
  • Żrodowski, Łukasz
  • Chmielewska, Agnieszka
  • Buhagiar, Joseph
  • Gloc, Michał
  • Michalski, Bartosz
  • Adamczyk-Cieślak, Bogusława
  • Kruszewski, Mirosław
  • Zielińska, Aleksandra
  • Kwaśniak, Piotr
  • Choińska, Emilia
  • Jastrzębska, Agnieszka
  • Jakubczak, Michał
  • Dean, David
  • Kijeńska-Gawrońska, Ewa
OrganizationsLocationPeople

article

How to control the crystallization of metallic glasses during laser powder bed fusion? Towards part-specific 3D printing of in situ composites

  • Choma, Tomasz
  • Leonowicz, Marcin
  • Li, X.
  • Krawczynska, Agnieszka
  • Swieszkowski, Wojciech
  • Żrodowski, Cezary
  • Błyskun, Piotr
  • Wróblewski, Rafał
  • Kulikowski, Krzysztof
  • Małachowska, Aleksandra
  • Moneta, Grzegorz
  • Cetner, Tomasz
  • Jaroszewicz, Jakub
  • Dobkowska, Anna
  • Wysocki, Bartlomiej
  • Ciftci, Jakub
  • Yuan, L.
  • Morończyk, Bartosz
  • Chulist, Robert
  • Żrodowski, Łukasz
Abstract

This paper describes a strategy for creating highly oriented crystalline-amorphous composites using the laser powder bed fusion (LPBF) process. The strategy involves using a novel two-stage melting approach and ultra-high-pressure hot isostatic pressing (HIP) on well-known AMZ4 (Zr59.3Cu28.8Al10.4Nb1.5) and equiatomic CuZr amorphous alloys.The experiments demonstrate that by the fine-tuning laser parameters, allowed to obtain parts with purely amorphous material and to create geometry-specific microstructural design composites based on laminate amorphous-crystalline structure. This approach also provides novel opportunities for nonequilibrium phase distribution design by controlling local crystallization in the heat-affected zone (HAZ) and avoiding heat accumulation. Additionally, the porous amorphous material can be densified without crystallization using HIP at a temperature near the supercooled liquid region.The distribution of the crystalline phase created during LPBF and crystallization on pre-induced nuclei during HIP was proven to be a critical factor for composite properties. Wear and bending tests reveal the influence of crystalline-amorphous layers orientation on mechanical properties. The functional demonstrators were manufactured to show the possibilities in the design for additive manufacturing (DfAM) with a microstructure-designed composites.

Topics
  • porous
  • microstructure
  • amorphous
  • experiment
  • crystalline phase
  • glass
  • glass
  • composite
  • selective laser melting
  • bending flexural test
  • hot isostatic pressing
  • crystallization
  • nonequilibrium phase