People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Serdeczny, Marcin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Computational analysis of yield stress buildup and stability of deposited layers in material extrusion additive manufacturingcitations
- 2022Numerical Predictions of Bottom Layer Stability in Material Extrusion Additive Manufacturingcitations
- 2022A Numerical Investigation of the Inter-Layer Bond and Surface Roughness during the Yield Stress Buildup in Wet-On-Wet Material Extrusion Additive Manufacturing
- 2021Stability and deformations of deposited layers in material extrusion additive manufacturingcitations
- 2020Influence of Fibers on the Flow Through the Hot-End in Material Extrusion Additive Manufacturingcitations
- 2020Influence of Fibers on the Flow Through the Hot-End in Material Extrusion Additive Manufacturingcitations
- 2018Numerical prediction of the porosity of parts fabricated with fused deposition modeling
- 2018Numerical Modeling of the Material Deposition and Contouring Precision in Fused Deposition Modeling
- 2018Numerical Study of the Impact of Shear Thinning Behaviour on the Strand Deposition Flow in the Extrusion-Based Additive Manufacturing
Places of action
Organizations | Location | People |
---|
article
Computational analysis of yield stress buildup and stability of deposited layers in material extrusion additive manufacturing
Abstract
This paper investigates the stability of deformable layers produced by material extrusion additive manufacturing. A Computational Fluid Dynamics (CFD) model is developed to predict the deposition flow of viscoplastic materials such as ceramic pastes, thermosets, and concrete. The viscoplastic materials are modelled with the Bingham rheological equations and implemented with a generalized Newtonian fluid model. The developed CFD model applies a scalar approach to differentiate the rheology of two layers in order to capture the deposition of a wet layer onto a semi solidified printed layer (i.e., wet-on-semisolid printing). The semi solidification is modelled by a yield stress buildup. The cross-sectional shapes of the deposited layers are predicted, and the relative deformation of the first layer is studied for different yield stress buildups and processing conditions such as printing- and extrusion-speed, layer height, and nozzle diameter. The results of the CFD model illustrate that the relative deformation of the first layer decreases non-linearly with an increase in yield stress, and that stable prints can be obtained when taking into account the semi solidification. Furthermore, it is found that the deformation is dependent on a non-trivial interplay between the extrusion pressure, the shape of the cross-section, and the contact area between the layers. Finally, the results highlight which process conditions can be changed with benefit in order to limit the requirement on the yield stress buildup and still provide stable prints.