People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jinschek, Joerg R.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Effect of electron dose rate on the total dose tolerance limit in ZIF 8 metal organic framework (MOF)
- 2023Microstructural Evolution of One and Two step Heat Treatments on Electron Beam Powder Bed Fusion Fabricated Haynes 282
- 2023Microstructural Heterogeneities in Electron Beam Additively Manufactured Haynes 282
- 2023Observations of ‘far from equilibrium’ phenomena under in reactor thermal conditions using in situ TEM
- 2023In situ TEM observations of thermally activated phenomena under additive manufacturing process conditions
- 2023Strengthening of Pre-treated Aluminum During Ultrasonic Additive Manufacturing
- 2023Study in Phase-Transformation Temperature in Nitinol by In Situ TEM Heating
- 2023The effect of cyclic heat treatment on microstructure evolution during Plasma Arc Additive Manufacturing employing an SEM in-situ heating study
- 2023In-situ S/TEM Visualization of Metal-to-Metal Hydride Phase Transformation of Magnesium Thin Films
- 2023Probing the Effects of Cyclic Heating in Metal Additive Manufacturing by means of a Quasi in situ EBSD Study
- 2023Study of Phase-transformation Behavior in Additive Manufacturing of Nitinol Shape Memory Alloys by In Situ TEM Heating
- 2023Study of Phase-transformation Behavior in Additive Manufacturing of Nitinol Shape Memory Alloys by In Situ TEM Heating
- 2023Quantification of Microstructural Heterogeneities in Additively Manufactured and Heat-Treated Haynes 282
- 2022Preface to the special issuecitations
- 2022Strengthening of pretreated aluminum during ultrasonic additive manufacturingcitations
- 2009The Titan Environmental Transmission Electron Microscopecitations
Places of action
Organizations | Location | People |
---|
article
Strengthening of pretreated aluminum during ultrasonic additive manufacturing
Abstract
Strengthening effects in materials bonded by the high strain rate plastic deformation process, Ultrasonic Additive Manufacturing (UAM), were investigated. Aluminum (Al 6061) was pretreated by tempering and annealing prior to bonding through UAM. Following UAM, multiscale material characterization was performed. Tensile testing in the rolling (x) direction demonstrated the material became harder after the UAM process, and nanoindentation demonstrated the foil-foil interfaces became harder than the bulk foil material. The strengthening effects are a result of microstructure changes at the interfaces and in the bulk foil regions which were characterized using Xray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. These microstructure changes result from dynamic recrystallization, dynamic recovery, adiabatic heating, and precipitate dissolution. This study signifies the metallurgical features creating mechanical strength increases, rather than decreases, in UAM builds.