People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rafiemanzelat, F.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
3D printing of jammed self-supporting microgels with alternative mechanism for shape fidelity, crosslinking and conductivity
Abstract
Additive manufacturing technology is a growing field, which demands advanced chemistry and fabrication process if smart-materials are desired. Herein, the concept of jammed microgels designed with a new crosslinking method is introduced to be used in 3D-printing applications. Jammed microgels decorated with superficial hydrophobic segments and pure thermo-sensitive gelatin are applied as inks and exhibit shear-induced transition and fast recoverability, which are important for 3D-printing. The interaction of microgels within the as-extruded filaments and with the adjacent deposited layers guarantees shape-fidelity. After printing, a deep eutectic solvent (DES) formed from Arginine and Glycerol ([DES] Arg/Gly) is applied over the construct to trigger a chemical crosslinking reaction between epoxy and amine groups. The introduced [DES] Arg/Gly can play simultaneously two roles: (1) activator of covalent bond formation and (2) conducting agent. Generally, a variety of features including printability, rheological properties and shape-retention are dependent on the fraction of hydrophobic segments and the applied [DES] Arg/Gly concentration. Further, the main network percolation reaction follows a different strategy to achieve a sustainable printable system with biological, mechanical and physiological sustainability of the construct. These results open new possibilities to fabricate a wide range of adaptive platforms of smart materials with ease.