People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duarte, Valdemar R.
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024High-performance Ni-based superalloy 718 fabricated via arc plasma directed energy deposition ; effect of post-deposition heat treatments on microstructure and mechanical propertiescitations
- 2024High-strength low-alloy steel fabricated by in situ interlayer hot forging arc-based directed energy deposition assisted with direct cooling ; Microstructural and mechanical properties evaluationcitations
- 2024High-performance Ni-based superalloy 718 fabricated via arc plasma directed energy depositioncitations
- 2024Enhancing manufacturing and post-processing properties of WAAM ER110 HSLA steel ; in situ hot forging + post-deposited heat treatment effects on surface quality and specific cutting energycitations
- 2023In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625citations
- 2023In situ interlayer hot forging arc plasma directed energy deposition of Inconel® 625citations
- 2023In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625 ; process development and microstructure effectscitations
- 2023In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625: process development and microstructure effectscitations
- 2023In situ interlayer hot forging arc plasma directed energy deposition of Inconel® 625: microstructure evolution during heat treatmentscitations
- 2023In situ interlayer hot forging arc plasma directed energy deposition of Inconel® 625 ; microstructure evolution during heat treatmentscitations
- 2022In-situ hot forging direct energy deposition-arc of CuAl8 alloycitations
- 2022In-situ hot forging directed energy deposition-arc of CuAl8 alloycitations
- 2021Wire and Arc Additive Manufacturing of High-Strength Low-Alloy Steelcitations
- 2021Benchmarking of Nondestructive Testing for Additive Manufacturingcitations
- 2021Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing : Microstructure and synchrotron X-ray diffraction analysiscitations
- 2021Wire and Arc Additive Manufacturing of High‐Strength Low‐Alloy Steel: Microstructure and Mechanical Propertiescitations
- 2021Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing: Microstructure and synchrotron X-ray diffraction analysiscitations
- 2020In-situ strengthening of a high strength low alloy steel during Wire and Arc Additive Manufacturing (WAAM)citations
- 2020Influence of processing parameters on the density of 316L stainless steel parts manufactured through laser powder bed fusioncitations
- 2020Hot forging wire and arc additive manufacturing (HF-WAAM)citations
- 2020Effect of milling parameters on HSLA steel parts produced by Wire and Arc Additive Manufacturing (WAAM)citations
- 2019Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical propertiescitations
- 2019Large-dimension metal parts produced through laser powder bed fusion
- 2019Current Status and Perspectives on Wire and Arc Additive Manufacturing (WAAM)citations
Places of action
Organizations | Location | People |
---|
article
In-situ hot forging directed energy deposition-arc of CuAl8 alloy
Abstract
Authors acknowledge the Portuguese Fundação para a Ciência e a Tecnologia ( FCT - MCTES ) for its financial support via the project UID/EMS/00667/2019 (UNIDEMI). VD acknowledges Portuguese Fundação para a Ciência e a Tecnologia ( FCT - MCTES ) for funding the PhD grant SFRH/BD/139454/2018 . TAR acknowledges Portuguese Fundação para a Ciência e a Tecnologia ( FCT - MCTES ) for funding the PhD grant SFRH/BD/144202/2019 . Funding of CENIMAT/i3N by national funds through the Portuguese Fundação para a Ciência e a Tecnologia, I.P., within the scope of Multiannual Financing of R&D Units , reference UIDB/50025/2020–2023 is also acknowledge. This activity has received funding from the European Institute of Innovation and Technology (EIT) Raw Materials through the project Smart WAAM: Microstructural Engineering and Integrated Non-Destructive Testing. This body of the European Union receives support from the European Union's Horizon 2020 research and innovation programme. Parts of this research were carried out at PETRA III at DESY, a member of the Helmholtz Association. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020 . This project has received funding from the EU-H2020 research and innovation programme under grant agreement No 654360 having benefitted from the access provided by PETRA III at DESY in Hamburg, Germany within the framework of the NFFA-Europe Transnational Access Activity. The authors acknowledge support by OCAS NV and GUARENTEED via Joachim Antonissen. Publisher Copyright: © 2022 Elsevier B.V. ; CuAl8 alloy finds applications in industrial components, where a good anti-corrosion and anti-wearing properties are required. The alloy has a medium strength and a good toughness with an elongation to fracture at room temperature of about 40%. Additionally, it has a good electrical conductivity, though lower than that of pure Al or pure Cu. Despite these characteristics, ...