People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mollah, Md. Tusher
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Numerical modeling of fiber orientation in multi-layer, isothermal material-extrusion big area additive manufacturingcitations
- 2024Optimization of core groove geometry for the manufacture and operation of composite sandwich structures in wind turbine blades
- 2024Computational fluid dynamics modelling of vacuum-assisted resin infusion in composite sandwich panels during wind turbine blade manufacturing
- 2024Rheology and printability of cement paste modified with filler from manufactured sand
- 2023Modeling fiber orientation and strand shape morphology in three-dimensional material extrusion additive manufacturingcitations
- 2023Computational analysis of yield stress buildup and stability of deposited layers in material extrusion additive manufacturingcitations
- 2023Computational Fluid Dynamics Modelling and Experimental Analysis of Material Extrusion Additive Manufacturing
- 2023Numerical modeling of fiber orientation in additively manufactured compositescitations
- 2022Modelling Fiber Orientation During Additive Manufacturing-Compression Molding Processes
- 2022Modelling Fiber Orientation During Additive Manufacturing-Compression Molding Processes
- 2022Modelling of Additive Manufacturing - Compression Molding Process Using Computational Fluid Dynamics
- 2022Modelling of Additive Manufacturing - Compression Molding Process Using Computational Fluid Dynamics
- 2022Numerical Predictions of Bottom Layer Stability in Material Extrusion Additive Manufacturingcitations
- 2022A Numerical Investigation of the Inter-Layer Bond and Surface Roughness during the Yield Stress Buildup in Wet-On-Wet Material Extrusion Additive Manufacturing
- 2022A Numerical Investigation of the Inter-Layer Bond and Surface Roughness during the Yield Stress Buildup in Wet-On-Wet Material Extrusion Additive Manufacturing
- 2021Stability and deformations of deposited layers in material extrusion additive manufacturingcitations
- 2021Numerical simulation of multi-layer 3D concrete printingcitations
Places of action
Organizations | Location | People |
---|
article
Stability and deformations of deposited layers in material extrusion additive manufacturing
Abstract
This paper presents computational fluid dynamics simulations of the deposition flow during printing of multiple layers in material extrusion additive manufacturing. The developed model predicts the morphology of the deposited layers and captures the layer deformations during the printing of viscoplastic materials. The physics is governed by the continuity and momentum equations with the Bingham constitutive model, formulated as a generalized Newtonian fluid. The cross-sectional shapes of the deposited layers are predicted, and the deformation of layers is studied for different constitutive parameters of the material. It is shown that the deformation of layers is due to the hydrostatic pressure of the printed material, as well as the extrusion pressure during the extrusion. The simulations show that a higher yield stress results in prints with less deformations, while a higher plastic viscosity leads to larger deformations in the deposited layers. Moreover, the influence of the printing speed, extrusion speed, layer height, and nozzle diameter on the deformation of the printed layers is investigated. Finally, the model provides a conservative estimate of the required increase in yield stress that a viscoplastic material demands after deposition in order to support the hydrostatic and extrusion pressure of the subsequently printed layers.