People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hermans, Marcel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Correlation between microstructural inhomogeneity and architectural design in additively manufactured NiTi shape memory alloyscitations
- 2023Revealing the effects of laser beam shaping on melt pool behaviour in conduction-mode laser meltingcitations
- 2023Healing cracks in additively manufactured NiTi shape memory alloyscitations
- 2023Effect of heat treatment on microstructure and functional properties of additively manufactured NiTi shape memory alloyscitations
- 2023Superelastic response and damping behavior of additively manufactured Nitinol architectured materialscitations
- 2023Laser butt welding of thin stainless steel 316L sheets in asymmetric configurations: A numerical studycitations
- 2023Achieving superelasticity in additively manufactured Ni-lean NiTi by crystallographic designcitations
- 2023Local control of microstructure and mechanical properties of high-strength steel in electric arc-based additive manufacturingcitations
- 2021The Effects of Process Parameters on Melt-pool Oscillatory Behaviour in Gas Tungsten Arc Weldingcitations
- 2021Predictive analytical modelling and experimental validation of processing maps in additive manufacturing of nitinol alloyscitations
- 2021The Effect of Groove Shape on Molten Metal Flow Behaviour in Gas Metal Arc Weldingcitations
Places of action
Organizations | Location | People |
---|
article
Predictive analytical modelling and experimental validation of processing maps in additive manufacturing of nitinol alloys
Abstract
Nitinol (NiTi) shape memory alloys fabricated by Laser Powder Bed Fusion (L-PBF) Additive Manufacturing (AM) have attracted much attention in recent years, as compared with conventional manufacturing processes it allows to produce Nitinol parts with high design complexity. Avoidance of defects during L-PBF is crucial for the production of high quality Nitinol parts. In this study, analytical models predicting melt pool dimensions and defect formation criteria were synergistically used to develop processing maps demonstrating boundary conditions for the formation of such defects, as balling, keyhole-induced pores, and lack of fusion. Experimental validation has demonstrated that this method can provide an accurate estimation and guide manufacturability of defect-free Nitinol alloys. Moreover, the crack formation phenomena were experimentally analysed, which showed that a low linear energy density (E l ) should be chosen to avoid cracks in the optimized process windows. Based on model predictions and experimental calibrations, Nitinol samples with a relative density of more than 99% were successfully fabricated. ; Team Vera Popovich ; Team Marcel Hermans