People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wallis, Christopher
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Investigations of Plasma Metal Deposition (PMD) of 6061 and 7075 Aluminum Alloys for Aerospace and Automotive Applicationscitations
- 2021Fabrication of 3D metal-ceramic (Al-AlN) architectures using laser-powder bed fusion processcitations
- 2019Effect of heat treatments on microstructure and properties of CuCrZr produced by laser-powder bed fusioncitations
- 2019Additive manufacturing of thermal management-relevant hybrid structures
Places of action
Organizations | Location | People |
---|
article
Fabrication of 3D metal-ceramic (Al-AlN) architectures using laser-powder bed fusion process
Abstract
<p>The potential of metal additive manufacturing for producing high conductivity materials and hybrid systems for thermal management in opto-, power and microelectronics has been investigated. Using the laser-based powder-bed fusion technology, the joining of ceramics (aluminum nitride) and metals (aluminum alloy: AlSi10Mg) has been studied with a focus on the fusion zone and the interlayer. Metallization of the ceramic surface with aluminum was applied to realize a stable process for forming metal-ceramic multilayer architectures. A sputtering process proved to be able to form a stiff interlayer and prevent direct contact of the laser beam with aluminum nitride. The bonding characteristics of aluminum nitride/aluminum alloy hybrid have been assessed, using scanning electron microscopy and energy dispersive X-ray spectroscopy. Owing to residual stress evolution during laser-powder bed fusion, process-induced material damage such as cracking at the binding zone was investigated and compared to residual stress simulations by which a correlation between process parameters, part geometry and the material failure could be established. Thus, the fabrication of crack-free metal-ceramics by a stable laser-powder bed fusion process was achieved.</p>